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Abstract

The unit cells connected periodically at a single node with only one degree of freedom is called a monocoupled sys-
tem. Dispersion relations for such systems are studied widely; however, the analytical solution for salient features
of the attenuation band, such as the number of peaks in a band and band merging, have been relatively unex-
plored. In this paper, a general theory for obtaining the attenuation characteristics of the general monocoupled
system from the roots and poles of the rational polynomial of the dispersion relation is developed. The uniqueness
of the developed rational polynomial method is that it can predict the attenuation peaks and the possibility of
multiple peaks in an attenuation band due to coupling between the different band formation mechanisms in addi-
tion to standard band boundaries. The most general monocoupled system has been conceptualized by combining
the three mechanisms, namely inertial amplifier, effective negative mass, and effective negative stiffness. This
general system is named Inertial Amplifier Negative Mass Negative Stiffness (IANMNS). This designed mono-
coupled system degenerates into other seven subsystems as special cases, such as the Inertial Amplifier Negative
Stiffness (IANS), the Inertial Amplifier Negative Mass (IANM), the Negative Mass Negative Stiffness (NMNS),
the Inertial Amplifier (IA), the Negative Stiffness (NS), the Negative Mass (NM) and the Monoatomic system.
The closed-form expressions for the peaks in attenuation level and bounds in terms of nondimensional frequency
ratio and other governing parameters such as the inertial mass ratio, mass ratios of resonators one (embedded in
main chain mass) and two (embedded in inertial mass), frequency ratios of resonators one and two, and angular
parameter are derived for the IANMNS and all the other seven subsystems. The conditions for obtaining the
double peaks and band merging are defined analytically.

(© 2022 Published by Elsevier Ltd.

Keywords: Dispersion relation; Negative mass; Negative stiffness; Inertial Amplifier; Attenuation characteristic

1. Introduction

A periodic system, in which unit cells are connected with their neighboring units via
a single degree of freedom (dof) at a single coordinate, is called a monocoupled system.
A mono-coupled periodic system can be conceptualized as a series of spring-mass lattice
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systems. Additionally, a monocoupled system has only one coupling dof linked with the
adjacent element; therefore, the existence of only two distinct opposite directional waves
is feasible. Moreover, both of these waves have reciprocal wavenumber (k) corresponding
to a particular free wave frequency (w) [1]. The relation between the wavenumber (k)
and free wave frequency (w) is called dispersion relation, which can be determined with
the help of Block-Floquet theorem [2]. Wave propagation through periodic monocoupled
systems has been a topic of investigation for long; due to its ability to create frequency
band gaps [3-7] consisting of attenuation band and propagation band. It has wide range of
applications such as: noise reduction in helicopter cabin induced by vibration of gearbox
using periodic struts [8], vibration absorbers in 1D lumped mass model [9], vibration
suppression using chiral lattice [10], etc. Attenuation band is a range of frequencies of
which a wave decays spatially. Free waves in a system, scatters due to the periodic
interference, this phenomenon is known as Bragg scattering and is considered to be one
of the band formation mechanisms of the mono-coupled systems [11-15].

With the discovery of the concept of the local resonance [16, 17|, the sub-wavelength
bandgaps are possible to be achieved exploiting the hybridization mechanism between
dispersion and resonance [18-21]. The characterization of local resonance bandgap is
primarily comprehended by evaluating the effective properties of the unit cell for respective
frequency range. For example, the existence of the negative effective mass in a mass in
mass resonator [22-24] or effective negative stiffness in a Helmholtz resonator [25-27] near
attenuation peaks were reported. These extreme properties in a resonating metamaterial
results in an attenuation band near the natural frequency of the embedded resonator
28, 29]. Embedding a resonator inside a unit of metamaterial will yield a narrow band
near resonating frequency [24, 30]. Further, an inertial amplifier mechanism [31-34] has
been introduced, which amplifies the effective mass of the system by a special mechanism
using rigid link [35-37]. Unlike the effective mass of the mass-in-mass metamaterial, the
inertial amplifier alters the effective inertia of the system in a constant amount throughout
the frequency spectrum. This inertial amplifier system yields an attenuation band having
peak/s, which increases the attenuation level. Moreover, the double peaks in attenuation
band due to resonance coupling and band merging have been obtained in the recent state
of art[38, 39]. Often, double peaks in stopband results in a high attenuation level for a
wide frequency range [39, 40], which eradicates the primary shortcoming of mass-in-mass
metamaterial that the attenuation level within the band is very low for significant parts
of the attenuation band [32].

Motivated by these remarkable features of the monocoupled systems, researchers stud-
ied the coupling of various mechanisms such as effective negative mass, and stiffness [41-
43] and a mass in mass resonator with IA to obtain double peak in attenuation band
[40], for obtaining a wider attenuation band. Expressions of the bounding frequencies
were reported in the literature [44-46], and the dispersion diagram can be obtained in
the frequency domain applying Bloch-Floquet’s theory. However, the condition for the
double peak phenomenon and the close form analytical expression for the exact location
of the peaks in the attenuation band were still missing from the state of the art.

A generalized monocoupled system consisting of three mechanisms, namely mass in
mass resonator, inertial amplifier, and Helmholtz resonator, has been developed to bridge
the mentioned research gap. This proposed generalized system can be reduced to seven



75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

Bhatt et. al. / Journal of Sound and Vibration 00 (2025) 1-28 3

monocoupled subsystems by assuming corresponding mass to zero, as depicted in Fig. (2).
Further, a general framework implementing rational polynomial is developed in this pa-
per from which the closed form expressions for the position of attenuation peaks and
bounding frequencies of propagation band can be identified for any undamped monocou-
pled system. Damping is an inherent property of any material; however, its decaying
nature is perceivable in time domain response. Wave attenuation is a phenomenon in the
spatial domain; therefore, inherent small material damping does not significantly affect
the characteristics of the bands, including band boundaries and attenuation peaks. Al-
though a notable alteration in band characteristics may observe for the inclusion of high
viscous damping and metadamping could also notice in that case [47]. From the roots of
the denominator of the rational polynomial, the position of the peaks in the attenuation
band and the possibility of double peaks can be identified. The novelty of the paper
lies in realizing the monocoupled system, which can act as a generalized system for the
majority of the monocouple systems existing in the literature, and the proposition of a
rational polynomial based approach to predict the peaks and bounds of the attenuation
band. Moreover, the effect on attenuation characteristics has been conceptualized by per-
forming a parametric variation of the governing parameters. It is noteworthy that the
developed theory is directly applicable only for the undamped monocoupled systems.

2. The generalised mono-coupled system: Conceptualization

In this paper, a generalized monocoupled system has been introduced, which is a
combination of systems with an inertial amplifier, negative mass, and negative stiffness.
Fig. (2)(a) represents a unit metamaterial cell in periodic arrangement of monocoupled
system with combined inertial amplifier, negative mass, and negative stiffness.

Fig. (1). (a) Periodically connected infinitely long chain of TANMNS system, (b) Nodal degrees of
freedom of TANMNS system.

This generalized system will be called as the Inertial Amplifier Negative Mass Negative
stiffness (IANMNS) system. Here the main chain has mass M and stiffness K. The first
resonator with mass m; and stiffness k; is connected directly to main mass M. The mass
M has another mass m, attached with rigid links to act as an inertial amplifier. The
vertical barriers shown in Fig. (1)(a), are placed to confine the motion of inertial mass m,
in only vertical direction. The second resonator with mass ms and stiffness ks is connected
to mass m,. So here, four different masses are there in a single representative unit cell.
This generalized IANMNS system can be reduced to seven subsystems, as illustrated in
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m;
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k;
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Fig. (2). (a) Generalised monocoupled system Inertial Amplifier Negative Mass Negative Stiffness
(TANMNS) (b) Inertial Amplifier Negative Stiffness (IANS) system obtained by considering m; = 0, (c)
Negative Mass Negative Stiffness (NMNS) system obtained by considering m, = 0, (d) Negative Stiffness
(NS) system obtained by considering m, = 0 and my = 0, (e) Inertial Amplifier Negative Mass (IANM)
system obtained by considering mq = 0, (f) Inertial Amplifier (IA) system obtained by considering m; = 0
and my = 0, (g) Negative Mass (NM) system obtained by considering m, = 0 and my = 0, (h) basic
monoatomic system obtained by considering m, = 0, m; = 0 and mo = 0.

Fig. (2)(b-h).

2.1. Equation of motion of each mass
The dynamic stiffness matrix can be constructed using governing equations of motion
and compatibility equations of the system. The degrees of freedom of IANMNS system
are shown in Fig. (1)-(b). The governing equations of motion at nodes 2 and 7 of resonator
mass embedded in base chain can be written as
node 2:  myiis + ky (ug —uy) =0 (1)
node 7: m1ﬁ7 + ]471 (U7 — Ug) =0 (2)
Similarly at nodes 4 and 5, the governing equations of motion of resonators embedded in
mass (m,) connected with rigid links can be written as
node 4:  moty + ko (v4 —v3) =0 (3)
node 5: m21'}5 + kz (U5 - U(;) =0 (4)
The nodes 1 and 8, as well as nodes 3 and 6 have rigid links attached to them, which can
be modelled in terms of force (f,,) and the governing equations of nodes 1, 3, 6 and 8 can
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be written as

node 1:  Miiy + K (uy — ug) + k1 (ug — ug) =2 f,, cos ¢ (5)

node 8: Miig + K (us —u1) + k1 (usg — ur) =2 f,, cos ¢ (6)

node 3: mgU3 + ko (v3 —vg) =2 fsing (7)

node 6: myUg + ko (vg — v5) = 2 f,sin ¢ (8)
Here, (o) denotes two time time derivative so (o) = —w? (e) can be written.

2.2. Compatibility equation
The compatibility equations of nodes 1, 3, 6 and 8 can be determined by kinematics
of rigid links as follows

. Ug — Uy
Displ t at node 3: = 9
isplacement at node U= o 5 9)
d Displ t at node 6 i (10)
an isplacement at node 6:  vg =
P 0 2tan ¢

Using equations of motion of node 3, 4, 5 and 6 (Eq. (7),Eq. (3),Eq. (4) and Eq. (8));
and compatibility equations of displacements at node 3 and node 6 (Eq. (9) and Eq. (10)),
the force in rigid links can be calculated as
B 1
4 tan ¢ sin ¢
substituting Eq. (11) into the term (2 f,, cos ¢) present in governing equations of nodes 1
and 8 can be written as

l, =2 f,cos¢p =

2 k22
fn <—maw + ko — —> (ug — uq) (11)

— Mg w? + kg

(—macﬂ + ko — L) (ug — uy) (12)

2 tan? ¢ —1my w? + ko

2.3. Construction of Dynamic Stiffness Matrix
The Dynamic Stiffness matrix (D,) can be obtained as
D,=-w'M+K+L (13)
Where, the stiffness matrix (K) and mass matrix (M) can be formulated using equations
of motion at node 1, 2, 7 and 8 (Eq. (5), Eq. (1), Eq. (2) and Eq. (6)). Moreover, the
corresponding response vector u is vector of displacements at nodes 1, 2, 7 and 8

K+k -k 0 —-K M 0 0 O
—ki k0 0 0 m 0 0
K = : M = (14)
0 0 k?l —k'l 0 0 ma 0
-K 0 -k K+k 0O 0 0 M

u=(u uy ur us )/ (15)
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Further, incorporating Eq. (12), the forces at nodes 1 and 8 due to rigid links can be
written in matrix form as

l, 0 0 =,
0 00 O
L= (16)
0 00 O
—l, 0 0 |,
The dynamic stiffness matrix is obtained as
—w M+ K+ ky + 1, —ky 0 -K -1,
—k; —w?my + ky 0 0
D, =
0 0 —w2m1 + kl —kl
—K — ln 0 —kl —(.UQM -+ K -+ kl -+ ln
(17)

By necessary matrix manipulations the condensed Dynamic Stiffness matrix (D,.) for
responses at node 1 and node 8 is obtained as

~?M + K + ki + e+, K —1,

D,. = ) L (18)
~K 1, M+ K+ ky 4 B 41,

w?mi—k1

Receptance matrix of the IANMNS system can be calculated by taking inverse of the
condensed dynamic stiffness matrix D,

_ apn  ag
R = Dycl B [ QRL OZRZ } (19)
Where
1 9 k'
ozLL:|D—yC|(—wM+K+k1—I—m+ln) (20)
and app = !D—1yc| (K +1,) (21)
i’ ’ )
and |D,.| = (—w2M+ K +k + — + ln) — (K +1,) (22)

Moreover, because of symmetric representative unit cell, the receptance matrix will
have [48]

QORR — (XL, (23)

and due to symmetric dynamic stiffness matrix the receptance matrix will also be the
symmetric matrix so

R, = XLR (24)

Following this method, the receptance matrix can be formulated for all the seven subsys-
tems by assigning zero to the suitable masses as per given in Fig. (2)(b-h).
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16 3. A general theory of attenuation characteristics in monocoupled system
For the unit cell of any monocoupled system, the force displacement relationship can
be demonstrated by a receptance matrix as follows [48]

dr arrp QLR fr
= 25
{ dr } |:CYRL QRR Ir (25)
Further, As per Bloch theorem [2], the relation between left and right displacement as
well as force can be written as
dR = ei“ dL
fr=—€"f1 (26)
Where, « is a propagation constant. solving Eq. (25) and Eq. (26), the dispersion relation
can be explained as
cos(k) = %LZRR (27)

Further, using Eq. (23), Eq. (24) and Eq. (27), the dispersion relation for the symmetric
system can be written as

cos(k) = arL (28)

QLR
As the components of receptance matrix are functions of square of frequency, the general
statement for any monocoupled system can be written as

cos(k) = g(w?) =z (29)
Now,
e e =21
241 =2ge"
2 —2xe"+1=0 (30)
Let A =¢e'* from Eq((30))
A=x+va?—-1 (31)
Let, solution Kk = a+ i3, So In A = —§ + i «. It is useful to note here that the value of
[ defines the level of attenuation and « defines the phase of propagating wave. When,
x? > 1, A is real, So when
A<O0—-mmA=h|Al+it - a=7 & = —InA — Attenuation
A>0—->ImA=In|A|+i10—=a=0%& =—1InA — Attenuation (32)
But when z? < 1, A is complex. Now, let = cos(d) so the following can be derived from
Eq. (31)
A=e" = HB) — co5(8) 4+ isin(6) = a = = cos () & B =0 — Propagation
(33)
From Eq. (32) and Eq. (33), it can be concluded that in case of monocoupled systems, the
wave will be purely propagating (Fig. (3)(a)) or attenuating (Fig. (3)(b)) because the wave
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number can not have simultaneous non zero imaginary and real values. The simultaneous
non zero imaginary and real values will cause fluctuating attenuation (Fig. (3)(c)), which
is impossible in the case of monocoupled systems. Any monocoupled system can be

@ 1 ®1 ©1
-
S os 0.5 0.5
€
T e e ey e S | o- Y -/ e
£
o
@-0.5 -0.5 -0.5
o
-1 -1 -1
0 5 10 0 5 10 o s 10
Distance Distance Distance

Fig. (3). Displacement patterns for different types of responses (a) pure propagation (b) pure attenuation
(¢) fluctuating attenuation

generalised in terms of effective mass (M.ss) and effective stiffness (K sf), by comparing
it to the mono-atomic chain given in Fig. (2)(h). So, the generalised dispersion equation
can be obtained as [7]

w? Meyy
Kery

Here, the effective mass and stiffness are also the functions of w?. The rational polynomial
equation for dispersion relation of any monocoupled system can be obtained as
R(w?)
Qw?)
From the roots and poles of rational polynomial Eq. (35), the salient features of band
structure like peak in attenuation and bounding frequencies can be obtained. First, the

peaks in the attenuation band occur when g(w?) — oo, which exists at the poles of
Eq. (35), which are the roots of

cos(k) =1 (34)

g(w?) =1+ (35)

Qw*) =0 (36)

Further, the propagation boundaries occur when g(w?) = +1 (at roots of Eq. (35)), which
results in two equations such as

R(w?) _
Qw?)
RW) _ S R(W) + 2Q(?) = 0 (39)

1+ 1 — R(w?) =0 (37)

1+

Q(w?)
As this monocoupled system is semi definite, the propagation zone will start from zero

frequency. So Eq. (37) or Eq. (38) will have zero as its one root, and other roots will
define bounds of propagation or attenuation bands.

4. Non-Dimensional form and various mono coupled systems
The non-dimensional form of the dispersion relation of the IANMNS system is depen-
dent on the following governing nondimensional parameters:
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w

VE/M
(w) and natural frequency of main chain /K/M.

7 . Free wave frequency ratio (1) expressed as ratio of free wave frequency

0 = =, Inertial mass ratio (f) defined as the ratio of the inertial mass m, with the
mass at the main chain M.

e 0,1 = 5} Mass ratio (6,1) is defined as the ratio of the mass of resonator embedded
in main chain and main mass.

o - \/ k1/m1
Nr1 = /_K/M .

is defined as ratio of the natural frequency of the first resonator with the natural

frequency of the main chain (y/K/M).

Frequency ratio of the resonator one attached to the main chain

e 0,5 = 7. Mass ratio (6,2) is defined as the ratio of the mass of resonator two (msz)
and main mass M.

® 1 = V\/k%"]\lj . Frequency ratio of the resonator two is defined as ratio of the natural

frequency of the second resonator with the natural frequency of the main chain
(VE/M).

e 7 = tan? ¢. angular parameter 7 is the square of a tangent of the angle made by
rigid links with x-axis in the anticlockwise direction.

4.1. Peak in attenuation level and bounds of propagation band

For the IANMNS system, the equation of dispersion relation in the form of Eq. (35)
is obtained from Eq. (20) and Eq. (28) in nondimentional parameters, where Q(n?) and
R(n?) are

R(?]2) = R3776 + R27]4 + R1772 + Rg

and  Q(n*) = Qs1° + Qan* + Q10 + Qo (39)
where, the coefficients of equation R = 0 are
Ry = -2~

Ry =29050" + 27 (001001 + 101”)
Rl = _27 (nr129r1 + nr12) 7]7’22
and Ry=0 (40)
The coefficients of equation () = 0 are
Qs =—0
QZ = 777’120 + 77r220 + 771“22 07’2 + 27
Q1= (=120 — 02”00 — 29) 0et® — 27y my2°
and QO - 2’77]7"12777”22 (41>

To study the possible number of peaks present in a single attenuation band, roots of any
one boundary equation (that is R = 0 or R 4+ 2Q) = 0) and attenuation peak equation
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(that is @ = 0) is necessary. Analytically roots of all three equations can be obtained,
however here we have given solution for only two equations i.e. Q = 0 and R = 0, as
closed form solution of R + 2() = 0 is complicated to write for IANMNS system.

The roots of = 0 are

q1 = Mr1

1
92,93 = \/2—9 (nrzz (0+0.2) +2y & \/(W (04 0r2) +27) — 8102y 9) (42)
It can be concluded from the roots of equation () = 0 that, the root ¢; is obtained from
natural frequency of mass in mass resonator and ¢, and ¢3 are result of combined effects
of inertial amplifier and negative stiffness resonator. As Ry = 0, its first root is n = 0,
which shows the starting of propagation zone. Roots of R = 0 are

r = 0
T2 = Tr2
r3 = 777“129r1 + 777“12 = Tr1 (]- + 87‘1) (43)

The roots r, and r3 are boundaries of dispersion diagram. The positions of these roots
are such that all three peaks of attenuation can never be in a single attenuation band
(proved in Appendix A).

Further, by placing zero value to the non required mass into the dynamic stiffness
matrix of IANMNS system as per given in Fig. (2); the @ and R equations and their
roots corresponding to all obtained systems are obtained in Table 1. Following are the
variables name given to the roots according to their reason of existence

= \/% <n (04 6,) + 27— \J (122 (64 00) +27) - 8”’“2279) )

€2 = \/i <n7’22 (0 +0r2) +27 + \/(777"22 (0 +02) + 2V)2 — 8"y 9) ()

20
27777“22
_ 46
s Nr2*Ors + 27 (46)
ENM =T (47)
2
and &4 = 77 (48)

By observing the equations of & and &, it can be concluded that they are independent
of the first resonator and the mechanism of the embedded resonator in the attached
inertial amplifier gives rise to two peaks (§; and &) in attenuation band. The root of the
system when the second resonator is directly connected with the rigid link is given by
the equation of £yg, which is only dependant on the angle of the rigid link and second
resonator. Similarly, when the first resonator is attached to main mass M, the peak in
attenuation band can be observed at £y, and in the case of the only inertial amplifier,
the attenuation peak is developed at ;4. It is noteworthy that the roots of the TANS
system are different from the roots of the IA and NS systems, as the TANS system is the
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Table 1. Closed form solution of the roots of the governing polynomials. The labels in first column
corresponds to the systems given in Fig. (2)(a-h)

Roots of Q =0 Roots of R =10

System

q1 q2 q3 T2 T3

a TANMNS & & v 0 Gio G
as, TIANMNS special & & — 0 G —
b TANS & & — 0 G2 —
C NMNS Ens  Enum — 0 Gn Gr2

d NS Evs —  — 0 Go —
e IANM Evv Era — 0 G1 —

f IA §ra — - 0 - —

g NM vy — — 0 (a1 —
h Monoatomic — — — 0 — —

coupling of the IA and NS systems. However, when the NM system is associated with
any IANS, IA, or NS system, the roots remain independent of each other as they are not
coupled.

The roots of equation R are defined as following

Crl = Mr1 (1 + ‘97'1) (49>
and (2 = 72 (50)

The root (1 is due to first resonator and (5 is due to the second resonator.

5. Validation

The dispersion relation of few subsystems of IANMNS has been obtained in literature
using different methods. The band boundaries and attenuation peaks are key features
of this dispersion diagrams. In this section, the roots of equation () = 0 to locate the
attenuation peaks and and roots of the equations R = 0 and R + 2@ = 0 to locate
band boundaries has been obtained for few subsystems and validated with corresponding
literature.

First, the dispersion characteristics of subsystem consists of effective negative mass
negative stiffness mechanism (NMNS) has been obtained. The input parameters as per
[41, 49] has been chosen and given in dimensional form in Table 2. The locations of
band boundaries are clearly mentioned in [41] and locations of attenuation peaks are
shown in [49], which are tabulated in Table 3. The results obtained by proposed method
are converted into nondimentional frequency as per the literature, and are tabulated in
Table 3.

Further, the dispersion characteristics of subsystem consists of inertial amplifier with
effective negative mass mechanism (IANM) has been obtained. The particular set of
system parameters has been chosen (Table 2 as an example for the purpose of validation
from [40]. The dispersion plot has been given in literature, from that the approximate
values of dimensionless frequency has been written in Table 3. The exact analytical
values has been obtained in Table 3 using the proposed method and they are written in
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Table 2. Input data for validation

Subsystems M My mi me K ki ko tano
NMNSJ[41, 49] 1 1.5 1 — 1 01 1 0.6
TANMI40] 1 4 2 — 1 8  — 1
NM]|23, 30] 0.1011 — 0.4647 — 117 74 — @ —

Table 3. Attenuation characteristics as per literature(lit*) and proposed(pro*) method

Subsystems NMNS [ANM NM
Lit* Pro* Lit* Pro* Lit* Pro*
. D1 1 1 0.7 0.7071 6.3 6.351
Attenuation Peaks . 11 1.066 5 5 o o
by 0 0 0 0 0 0
b 0.9 0.986 0.5 0.529 5.8 5.749
Band Boundaries  bs 1.6 1.581 2.4 2.392 7.6 7.673
ba 2.5 2.449 3.5 3.464 — —
bs 3.9 3.873 — — — —
% B b, /,,\/h, b, by % B b, H b—— | E . b, h‘Yh,
DlSpeI'SIOIl Plot 0 Fréqucncy ralig n 3 0 ! Freqﬁency rgtio n > 0 2 Friqucnc;?w 8 10

dimensionless frequency as per literature.

Additionally, the dispersion characteristics of subsystem consists of effective negative
mass mechanism (NM) has been obtained. The experimental study of a monocoupled
system with negative mass mechanism has been done by [23| and that has been used
for validation in [30]. The same example (Table 2) has been used here for validation.
The band characteristics obtained in literature are as per Table 3. The results obtain by
proposed method (Table 3) are in good agreement with the band characteristics obtain
in literature.

The dispersion plot for all three subsystems has been obtained and demonstrated in
Table 3.

6. Results and Discussions

In this section, contour plots of attenuation levels are plotted for the generalized
TANMNS system and all the other systems derived from it. The silver, blue, and green
dashed lines in all the contour plots depict the roots of the equation Eq. (36), Eq. (37)
and Eq. (38) respectively, which corresponds to the position of peaks in attenuation band
and boundaries of dispersion diagram. The values of the governing parameters used for
the analysis of each derived system are given in table Table 4. Additionally, the number
of attenuation peaks in the dispersion diagram as well as the possibilities of the double
peak in a single attenuation band is incorporated in Table 4.
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Table 4. systems and the values of their governing nondimentional parameters with possibility of double
peak phenomenon. The labels in first column corresponds to the systems given in Fig. (2)(a-h)

Nondimentional Paramaters Attenuation characteristics

System & 6., 65 1ma ne ~ Peaks  double peak
a IANMNS 1 3 025 05 2 1 3 Y
as TANMNS special 1 3 025 05 05 1 2 Y
b IANS 1 — 025 — 05 1 2 N
¢ NMNS 3 025 0-5 2 1 2 Y
d NS — 02 — 05 1 1 N
e IANM 1 3 — 05 — 1 2 Y
f IA -5 — — — — 1 1 N
g NM 3 — 05 — — 1 N
h Monoatomic _ = = = — — 0 N

6.1. Inertial amplifier negative mass negative stiffness (IANMNS)

Figure (4)(e) illustrates the contour of attenuation level with respect to natural fre-
quency of mass in mass resonator (7,1) and Fig. (4)(a-d) illustrates the dispersion relations
for particular values of 7,1 (as shown with pink dash-dot line in Fig. (4)(e)) for enhanced
comprehension about the bandgap and level of attenuation within the attenuation band.
In Fig. (4)(a) at n,; = 0.5, the roots of equations R(n?) = 0 and Q(n?) = 0 are occurring
alternatively (0 < &vpr < (1 < &1 < (o < &), so the peaks in attenuation band are in
separate attenuation zones. As the natural frequency of mass in mass resonator increases
and crosses the value &, the positions of roots changes and the double peak phenomenon
can be obtained in the first attenuation band (Fig. (4)(b)). Further upon increasing 7,
to the value of 7,9 the second propagation band merges and two separate peaks of at-
tenuation band falls in a single attenuation band resulting wide band gap (Fig. (4)(c)).
This concludes that by having same roots of @ =0 and R =0 ({ya = (2), they will be
canceled out and band merging will take place. further, When 7,; > 7,2 the double peak
will shift to the next attenuation band (Fig. (4)(d)).
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Fig. (4). The figure corresponds to IANMNS system (given in Fig. (2)-(a)), with values of governing
parameters 6 = 1;0,1 = 3,02 = 0.25,7,.2 = 2,7 = 1 and varying 7,1 from 0 to 5. The contour plot for
frequency ratio 7 varying from 0 to 5 versus 7,1 is shown in (e). In this figure (e) the silver, blue and green
dashed lines depicts the roots of equations Q(n?) = 0, R(n?) = 0, and R(n?) + 2Q(n?) = 0 respectively.
The (a), (b), (c) and (d) figures demonstrates the dispersion relation for the IANMNS system at sections
drawn by pink lines at 7,1 = 0.5, 1.5, 2 and 3.5 respectively.

6.2. Inertial amplifier negative mass negative stiffness (IANMNS) special case

As it has been observed in Fig. (4)(c), that by keeping both the resonators of the
IANMNS system at the same frequency, the band merging will give a wide band. This
phenomenon is observed in detail by varying the natural frequency of resonators from
0 to 5. The contour of attenuation level is plotted for this special case in Fig. (5)(e).
Fig. (5)(a,b,c and d) illustrates the dispersion relation for IANMNS special case for res-
onators with different frequencies 7,1 = 0.5, 1.5, 2 and 3.5 respectively. In Fig. (5)(a)
the roots position is 0 < & < (1 < &, so attenuation peaks will occur in separate atten-
uation bands. By increasing resonators’ frequency 7,1, as (1 > & the root position will
shift to 0 < & < & < (1 which results in double peak in first attenuation band. From
Fig. (5)(b, ¢, and d), it can be observed that by increasing the frequency of the resonator,
the first attenuation band gets wider, and due to the double peak phenomenon, the higher
attenuation level is observed for broad frequency range.
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Fig. (5). IANMNS special case(with both the resonators with same frequencies (1,1 = 1,2)). system (given
in Fig. (2)-(a)), with values of governing parameters § = 1; 6,1 = 3, 0,0 = 0.25, = 1 and varying 7,1 = 72
from 0 to 5. The contour plot for frequency ratio n varying from 0 to 5 versus 7,1 is shown in (e). In this
figure (e) the silver, blue and green dashed lines depicts the roots of equations Q(n?) = 0, R(n?) = 0,
and R(n?) + 2Q(n?) = 0 respectively. The (a), (b), (¢) and (d) figures demonstrates the dispersion
relation for the TANMNS special case system at sections drawn by pink lines at 7,; = 0.5, 1.5, 2 and 3.5
respectively.

6.3. Negative mass negative stiffness (NMNS)

Figure (6)(e) illustrates the contour of attenuation level of NMNS system (given in
Fig. (2)-(c)) with varying frequency of mass in mass resonator (1,1) from 0 to 5. Fig. (6)(a-
d) illustrates the dispersion relations at natural frequencies of mass in mass resonator
(my1) at 0.5, 1, 2 and 2.75 respectively. Fig. (6)(a) depicts that till root (1 < &ng, the
attenuation band will have single peaks. By increasing 7,1 further (Fig. (6)(b)), the double
peak in first attenuation band occurs as root (,; > {ng. Moreover as the roots (.1 = (2,
the merging of propagation band can be observed. In Fig. (6)(c), the root (o = Enu
results in wider attenuation band with single peak. Fig. (6)(d) demonstrates that root
position &ng < (o < Enar results in single peaks in attenuation bands.
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Fig. (6). NMNS system (given in Fig. (2)-(c)), with values of governing parameters 6,7 = 3,0,2 =
0.25,m.0 = 2,+v = 1 and varying 1,1 from 0 to 5. The contour plot for frequency ratio n varying from
0 to 5 versus 7,1 is shown in (e). In this figure (e) the silver, blue and green dashed lines depicts the
roots of equations Q(n?) = 0, R(n?) = 0, and R(n?) + 2Q(n?) = 0 respectively. The (a), (b), (c) and
(d) figures demonstrates the dispersion relation for the NMNS system at sections drawn by pink lines at
nr1 = 0.5, 1.5, 2 and 3.5 respectively.

6.4. Inertial amplifier negative mass (IANM)

The contour of attenuation level of IANM system (given in Fig. (2)-(e)) with varying
frequency of mass in mass resonator (7,;) from 0 to 5 is shown in Fig. (7)(e). The
dispersion relations at natural frequencies of mass in mass resonator (n,;) at 0.5, 1, 2
and 2.75 respectively are demonstrated in Fig. (7)(a-d). Fig. (7)(a) depicts that till
roots position is vy < (1 < &ra, the attenuation band will have single peaks. By
increasing 7,1 further (Fig. (7)(b)), the double peak in first attenuation band occurs
as roots Eny < €14 < (1. In Fig. (7)(c) and (d), the root positions &4 < Enp < (G
showing double peak can be observed and also the attenuation band gets wider as increase
in natural frequency of mass in mass resonator.
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Fig. (7). IANM system (given in Fig. (2)-(e)), with values of governing parameters § =1, 6,1 =3,y =1
and varying 7,1 from 0 to 5. The contour plot for frequency ratio n varying from 0 to 5 versus 7, is shown
in (e). In this figure (e) the silver, blue and green dashed lines depicts the roots of equations Q(n?) = 0,
R(n?) = 0, and R(n?) +2Q(n?) = 0 respectively. The (a), (b), (c) and (d) figures demonstrates the
dispersion relation for the IANM system at sections drawn by pink lines at n,.; = 0.5, 1.5, 2 and 2.75
respectively.

The attenuation level contours of systems IANS (Fig. (2)-(b)), NS (Fig. (2)-(d)),
IA(Fig. (2)-(f)), NM (Fig. (2)-(g)) are demonstrated in Fig. (8)(a), (b), (c) and (d) re-
spectively. In IANS system, the two attenuation peaks are present but due to the coupling
of IA and NS, the natural frequency of resonator always falls in between the two roots of
@) = 0 which separates the attenuation bands Fig. (8)(a). In case of NS system, the po-
sitions of attenuation peak ({yg) and bound of propagation band ((.2) is shown by silver
and blue line in Fig. (8)(b). Similarly the peak (£;4) in attenuation band for IA is shown
with silver line in Fig. (8)(c) and Fig. (8)(d) illustrates the peak ({yas) in attenuation
band and bound ((,1) of propagation for NM system.
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Fig. (8). (a): System -TANS (given in Fig. (2)-(b)), (b): System -NS (given in Fig. (2)-(d)), (c): System
-TA (given in Fig. (2)-(f)), (d): System -NM (given in Fig. (2)-(g)), Here silver, blue and green dashed
lines are roots of equations Q(n?) = 0, R(n?) = 0, and R(n?) + 2 Q(n?) = 0 respectively.

7. Summary
The main observations of the results are summarized as follows:

1. In the TANMNS system, a maximum three number of attenuation peaks are possible.
Among them, two peaks occur due to the inertial amplifier negative stiffness (IANS)
system and the third one due to the negative mass (NM) system. However, these
three peaks can never be in a single attenuation band, but double peaks in a single
attenuation band are possible for several cases.

2. A special ITANMNS system, having both resonators with the same natural frequen-
cies, results in a wide bandgap with double attenuation peaks due to the band
merging phenomenon.

3. The TANM system also results in a wider band of high attenuation level due to
double peak in the attenuation band.

4. The expressions of attenuation peaks are mainly due to the four basic mechanisms:
TANS, NM, NS, and inertial amplifier (IA). The TANS system does not possess direct
roots from TA and NS as they are coupled. Nevertheless, the positions of peaks in
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the IANM system can be directly derived from NM and TA systems as they are
independent.

5. While the natural frequencies of both the resonators are same (7,1 = 7,2), then the
attenuation bands merge. On the other hand, the propagation band merges if the
equation of bounds has two roots with the same values.

6. The proper tuning of the parameters of the IANMNS, negative mass negative stiff-
ness (NMNS), and IANM systems may make them capable of obtaining double
peaks in a single attenuation band. This phenomenon is desired in obtaining an
attenuation bandgap with a significant attenuation level.

The overall criteria for separate attenuation peaks, double peaks phenomenon, and band
merging have been illustrated for TANMNS and its seven subsystems.

8. Conclusion

In this paper, a generalized monocoupled system inertial amplifier negative mass neg-
ative stiffness (IANMNS) has been developed by coupling several different mechanisms
of systems, such as an inertial amplifier, effective negative mass, and stiffness. Different
types of unit cells of monocoupled systems analyzed in the literature can be obtained by
assigning zero values to the specific masses.

A general theory has been developed to locate the positions and numbers of attenua-
tion peaks as well as bounding frequencies of the propagation band of any monocoupled
system using the rational polynomial equation of its dispersion relation. Exact closed-form
analytical expressions for the attenuation peaks and boundaries of the dispersion diagram
for the IANMNS system and seven other subsystems are obtained. Key contributions of
the paper include:

e Wave propagation and dispersion equations are analyzed in several papers adopting
an effective medium approach, transfer matrix approach, etc. These existing meth-
ods primarily yield the boundaries of the band, but they are unable to locate the
attenuation peaks or the existence of the peak or coupling of the peaks within the
attenuation band. Recently, this coupling of the attenuation peaks received very
significant attention as it ensures a certain level of attenuation throughout the at-
tenuation band. To overcome the above mentioned problem, the proposed rational
polynomial approach is developed in this paper, which can locate the attenuation
peaks and band boundaries. Moreover, it provides a mathematical basis for the
coupling of band gaps obtained from the different band formation mechanisms.

e Perceiving a generalized inertial amplifier negative mass negative stiffness (IAN-
MNS) monocoupled system from which seven monocoupled subsystems emerge as
special cases.

e The general theory for obtaining the closed-form expressions employing the con-
cept of roots and poles of a rational polynomial of dispersion relation has been
communicated.
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e The attenuation characteristics, such as bounds of the band gaps, location of the

peaks in the attenuation band of the seven monocoupled subsystems, and the source,
IANMNS, are compared.

Based on these findings, future monocoupled systems can be designed and specifically

tuned for the required bandwidth and attenuation level by combining different mechanisms
elicited in the paper.

Acknowledgements

Abhigna Bhatt and Arnab Banerjee acknowledge Inspire faculty grant, grant number:

DST/ INSPIRE/04/2018/000052, for partial supporting the research.

References

(1]

D. J. Mead, The forced vibration of one-dimensional multi-coupled periodic structures: An applica-
tion to finite element analysis, Journal of Sound and Vibration 319 (1-2) (2009) 282-304.

F. Bloch, Uber die quantenmechanik der elektronen in kristallgittern, Zeitschrift fiir physik 52 (7-8)
(1929) 555-600.

M. M. Sigalas, E. N. Economou, Elastic and acoustic wave band structure, Journal of Sound and
Vibration 158 (2) (1992) 377-382.

L. Brillouin, Wave propagation in periodic structures: electric filters and crystal lattices, Courier
Corporation, 2003.

J. W. S. B. Rayleigh, The theory of sound, Vol. 2, Macmillan, 1896.

D. J. Mead, Wave propagation in continuous periodic structures: Research contributions from
Southampton, 1964-1995, Journal of Sound and Vibration 190 (3) (1996) 495-524.

A. Banerjee, R. Das, E. Calius, Waves in Structured Mediums or Metamaterials: A Review, Archives
of Computational Methods in Engineering 26 (4).

Y. Lu, F. Wang, X. Ma, Helicopter interior noise reduction using compounded periodic struts,
Journal of Sound and Vibration 435 (2018) 264—280.

K. K. Reichl, D. J. Inman, Lumped mass model of a 1d metastructure for vibration suppression
with no additional mass, Journal of Sound and Vibration 403 (2017) 75-89.

O. Abdeljaber, O. Avci, D. J. Inman, Optimization of chiral lattice based metastructures for broad-
band vibration suppression using genetic algorithms, Journal of Sound and Vibration 369 (2016)
50-62.

D. J. Mead, Plates with regular stiffening in acoustic media: vibration and radiation, The Journal
of the Acoustical Society of America 88 (1) (1990) 391-401.

L. D’Alessandro, E. Belloni, R. Ardito, A. Corigliano, F. Braghin, Modeling and experimental
verification of an ultra-wide bandgap in 3d phononic crystal, Applied Physics Letters 109 (22)
(2016) 221907.

M. S. Kushwaha, P. Halevi, L. Dobrzynski, B. Djafari-Rouhani, Acoustic band structure of periodic
elastic composites, Physical review letters 71 (13) (1993) 2022.

V. Laude, Phononic crystals: Artificial crystals for sonic, Acoustic and Elastic Waves Berlin: De
Gruyter.

M. I. Hussein, M. J. Leamy, M. Ruzzene, Dynamics of phononic materials and structures: Historical
origins, recent progress, and future outlook, Applied Mechanics Reviews 66 (4).

Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, P. Sheng, Locally Resonant Sonic
Materials, Science 289 (5485) (2000) 1734-1736.

Y. Xiao, B. R. Mace, J. Wen, X. Wen, Formation and coupling of band gaps in a locally resonant
elastic system comprising a string with attached resonators, Physics Letters A 375 (12) (2011)
1485-1491.

A. O. Krushynska, V. G. Kouznetsova, M. G. Geers, Towards optimal design of locally resonant
acoustic metamaterials, Journal of the Mechanics and Physics of Solids 71 (2014) 179-196.



359
360
361

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412

[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]

[29]

[42]
[43]

Bhatt et. al. / Journal of Sound and Vibration 00 (2025) 1-23 21

F. Casadei, K. Bertoldi, Wave propagation in beams with periodic arrays of airfoil-shaped resonating
units, Journal of Sound and Vibration 333 (24) (2014) 6532-6547.

S. Krédel, N. Thomé, C. Daraio, Wide band-gap seismic metastructures, Extreme Mechanics Letters
4 (2015) 111-117.

C. Sugino, S. Leadenham, M. Ruzzene, A. Erturk, On the mechanism of bandgap formation in
locally resonant finite elastic metamaterials, Journal of Applied Physics 120 (13) (2016) 134501.

E. P. Calius, X. Bremaud, B. Smith, A. Hall, Negative mass sound shielding structures: Early
results, Physica Status Solidi B-Basic Solid State Physics 246 (9) (2009) 2089-2097.

S. Yao, X. Zhou, G. Hu, Experimental study on negative effective mass in a 1D mass—spring system,
New Journal of Physics 10 (4) (2008) 43020.

H. Huang, C. Sun, G. Huang, On the negative effective mass density in acoustic metamaterials,
International Journal of Engineering Science 47 (4) (2009) 610-617.

H. Huang, C. Sun, Theoretical investigation of the behavior of an acoustic metamaterial with extreme
young’s modulus, Journal of the Mechanics and Physics of Solids 59 (10) (2011) 2070-2081.

L. Sam Hyeon, P. Choon Mahn, S. Yong Mun, W. Zhi Guo, K. Chul Koo, Acoustic metamaterial
with negative modulus, Journal of Physics: Condensed Matter 21 (17) (2009) 175704.

E. Pasternak, A. V. Dyskin, G. Sevel, Chains of oscillators with negative stiffness elements, Journal
of Sound and Vibration 333 (24) (2014) 6676-6687.

I.-L. Chang, Z.-X. Liang, H.-W. Kao, S.-H. Chang, C.-Y. Yang, The wave attenuation mechanism
of the periodic local resonant metamaterial, Journal of Sound and Vibration 412 (2018) 349-359.
X. Xu, M. V. Barnhart, X. Li, Y. Chen, G. Huang, Tailoring vibration suppression bands with
hierarchical metamaterials containing local resonators, Journal of Sound and Vibration 442 (2019)
237-248.

A. Banerjee, R. Das, E. P. Calius, Frequency graded 1d metamaterials: a study on the attenuation
bands, Journal of Applied Physics 122 (7) (2017) 075101.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, Composite Medium with
Simultaneously Negative Permeability and Permittivity, Physical Review Letters 84 (18) (2000)
4184-4187.

C. Yilmaz, G. M. Hulbert, N. Kikuchi, Phononic band gaps induced by inertial amplification in
periodic media, Physical Review B 76 (5) (2007) 054309.

M. C. Smith, Synthesis of mechanical networks: the inerter, IEEE Transactions on automatic control
47 (10) (2002) 1648-1662.

S. Chowdhury, A. Banerjee, S. Adhikari, Enhanced seismic base isolation using inertial amplifiers,
in: Structures, Vol. 33, Elsevier, 2021, pp. 1340-1353.

N. M. M. Frandsen, O. R. Bilal, J. S. Jensen, M. I. Hussein, Inertial amplification of continuous
structures: Large band gaps from small masses, Journal of Applied Physics 119 (12) (2016) 124902.
A. H. Orta, C. Yilmaz, Inertial amplification induced phononic band gaps generated by a compliant
axial to rotary motion conversion mechanism, Journal of Sound and Vibration 439 (2019) 329-343.
K. Mizukami, K. Funaba, K. Ogi, Design and three-dimensional printing of carbon-fiber-composite
elastic metamaterials with inertial amplification mechanisms, Journal of Sound and Vibration 513
(2021) 116412.

Y. Gao, L. Wang, Ultrawide coupled bandgap in hybrid periodic system with multiple resonators,
Journal of Applied Physics 127 (20) (2020) 204901.

A. Stein, M. Nouh, T. Singh, Widening, transition and coalescence of local resonance band gaps
in multi-resonator acoustic metamaterials: From unit cells to finite chains, Journal of Sound and
Vibration (2022) 116716.

A. Banerjee, S. Adhikari, M. I. Hussein, Inertial amplification band-gap generation by coupling a
levered mass with a locally resonant mass, International Journal of Mechanical Sciences 207 (2021)
106630.

H.-H. Huang, C.-T. Sun, Anomalous wave propagation in a one-dimensional acoustic metamaterial
having simultaneously negative mass density and young’s modulus, The Journal of the Acoustical
Society of America 132 (4) (2012) 2887-2895.

J. Li, C. T. Chan, Double-negative acoustic metamaterial, Physical Review E 70 (5) (2004) 55602.
P. L. Marston, Comment on ” anomalous wave propagation in a one- dimensional acoustic metama-



413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

428

429

430

431

Bhatt et. al. / Journal of Sound and Vibration 00 (2025) 1-23 22

terial having simultaneously negative mass density and Young’s modulus” [J. Acoust. Soc. Am. 132,
2887-2895 (2012)], Journal of the Acoustical Society of America 135 (3) (2014) 1031-1033.

[44] A. Baxy, R. Prasad, A. Banerjee, Elastic waves in layered periodic curved beams, Journal of Sound
and Vibration 512 (2021) 116387.

[45] C. Sugino, Y. Xia, S. Leadenham, M. Ruzzene, A. Erturk, A general theory for bandgap estimation
in locally resonant metastructures, Journal of Sound and Vibration 406 (2017) 104-123.

[46] S.-L. Yeh, R. L. Harne, Origins of broadband vibration attenuation empowered by optimized vis-
coelastic metamaterial inclusions, Journal of Sound and Vibration 458 (2019) 218-237.

[47) M. I. Hussein, I. Patrick, A. Banerjee, S. Adhikari, Metadamping in inertially amplified metamateri-
als: Trade-off between spatial attenuation and temporal attenuation, Journal of Sound and Vibration
531 (2022) 116977.

[48] D. J. Mead, Wave propagation and natural modes in periodic systems: I. Mono-coupled systems,
Journal of Sound and Vibration 40 (1) (1975) 1-18.

[49] A. Bhatt, A. Banerjee, Double attenuation peaks in metamaterial with simultaneous negative mass
and stiffness, Physics Letters A (2022) 128201.

Appendix A. Roots positions of IANMNS system
The equations of roots of IANMNS system are given in Eq. (42) and Eq. (43). from
roots ¢ and r3, it can be seen that when

01>0 —=>navla+1)>n1 —rs>aq Al

To see the positions of roots g, and g3 with respect to 7y, r2 is subtracted from roots ¢2

and ¢3

1
QS - 7”% = 5 (_777“22 9 + 77r229r2 + 2 Y- \/(_nr220 + 777“22 07“2 + 27)2 + 4771“24629r2>

Q§ —rs = % <—7]r22 0+ np2’0rs + 27 + \/(_7%229 + 102 0,0 + 2’7)2 + 477r24929r2>
A2
Now
41:5%0%0,5 > 0 A3
(=22 0+ 0020, +27)° 440,00, > ((—11220 + 00000 +29)° A4
X2 X2
X <P+ 40,2070, A5
Further it can be simplified as
— VX2 + 4024020, < —x < /X2 +40,240%0, A6
X = VX2 + 401620, <0 < X+ /X2 + 4121670, AT
G —15<0<qi—r;
¢ <75 < 43
G2 <1y < qs3 A8

From Eq. A.8, it can be concluded that one boundary of the attenuation band lies be-
tween two attenuation peaks, which is the reason that in a single attenuation band, three
attenuation peaks can not occur.
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If ro < r3ie mo < nyvV0. + 1, then root g will always lie between r; to r, and
root g3 will always lie between ry to 3, and as ¢; < r3, this condition leads the system to
have two peaks in its first attenuation band if ¢; < 79 or in its second attenuation band
it g > ro. If rg <ryie. myv0r +1 < 1, then first ¢; will be the peak in attenuation
band, but for ¢, there are two possibilities

e 11 < ¢y < r3 double peak can be seen in first attenuation band

e 13 < @y < ry double peak is not possible as ry < gs.
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