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Abstract6

The unit cells connected periodically at a single node with only one degree of freedom is called a monocoupled sys-7

tem. Dispersion relations for such systems are studied widely; however, the analytical solution for salient features8

of the attenuation band, such as the number of peaks in a band and band merging, have been relatively unex-9

plored. In this paper, a general theory for obtaining the attenuation characteristics of the general monocoupled10

system from the roots and poles of the rational polynomial of the dispersion relation is developed. The uniqueness11

of the developed rational polynomial method is that it can predict the attenuation peaks and the possibility of12

multiple peaks in an attenuation band due to coupling between the different band formation mechanisms in addi-13

tion to standard band boundaries. The most general monocoupled system has been conceptualized by combining14

the three mechanisms, namely inertial amplifier, effective negative mass, and effective negative stiffness. This15

general system is named Inertial Amplifier Negative Mass Negative Stiffness (IANMNS). This designed mono-16

coupled system degenerates into other seven subsystems as special cases, such as the Inertial Amplifier Negative17

Stiffness (IANS), the Inertial Amplifier Negative Mass (IANM), the Negative Mass Negative Stiffness (NMNS),18

the Inertial Amplifier (IA), the Negative Stiffness (NS), the Negative Mass (NM) and the Monoatomic system.19

The closed-form expressions for the peaks in attenuation level and bounds in terms of nondimensional frequency20

ratio and other governing parameters such as the inertial mass ratio, mass ratios of resonators one (embedded in21

main chain mass) and two (embedded in inertial mass), frequency ratios of resonators one and two, and angular22

parameter are derived for the IANMNS and all the other seven subsystems. The conditions for obtaining the23

double peaks and band merging are defined analytically.24

© 2022 Published by Elsevier Ltd.
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1. Introduction26

A periodic system, in which unit cells are connected with their neighboring units via27

a single degree of freedom (dof) at a single coordinate, is called a monocoupled system.28

A mono-coupled periodic system can be conceptualized as a series of spring-mass lattice29
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systems. Additionally, a monocoupled system has only one coupling dof linked with the30

adjacent element; therefore, the existence of only two distinct opposite directional waves31

is feasible. Moreover, both of these waves have reciprocal wavenumber (κ) corresponding32

to a particular free wave frequency (ω) [1]. The relation between the wavenumber (κ)33

and free wave frequency (ω) is called dispersion relation, which can be determined with34

the help of Block-Floquet theorem [2]. Wave propagation through periodic monocoupled35

systems has been a topic of investigation for long; due to its ability to create frequency36

band gaps [3–7] consisting of attenuation band and propagation band. It has wide range of37

applications such as: noise reduction in helicopter cabin induced by vibration of gearbox38

using periodic struts [8], vibration absorbers in 1D lumped mass model [9], vibration39

suppression using chiral lattice [10], etc. Attenuation band is a range of frequencies of40

which a wave decays spatially. Free waves in a system, scatters due to the periodic41

interference, this phenomenon is known as Bragg scattering and is considered to be one42

of the band formation mechanisms of the mono-coupled systems [11–15].43

With the discovery of the concept of the local resonance [16, 17], the sub-wavelength44

bandgaps are possible to be achieved exploiting the hybridization mechanism between45

dispersion and resonance [18–21]. The characterization of local resonance bandgap is46

primarily comprehended by evaluating the effective properties of the unit cell for respective47

frequency range. For example, the existence of the negative effective mass in a mass in48

mass resonator [22–24] or effective negative stiffness in a Helmholtz resonator [25–27] near49

attenuation peaks were reported. These extreme properties in a resonating metamaterial50

results in an attenuation band near the natural frequency of the embedded resonator51

[28, 29]. Embedding a resonator inside a unit of metamaterial will yield a narrow band52

near resonating frequency [24, 30]. Further, an inertial amplifier mechanism [31–34] has53

been introduced, which amplifies the effective mass of the system by a special mechanism54

using rigid link [35–37]. Unlike the effective mass of the mass-in-mass metamaterial, the55

inertial amplifier alters the effective inertia of the system in a constant amount throughout56

the frequency spectrum. This inertial amplifier system yields an attenuation band having57

peak/s, which increases the attenuation level. Moreover, the double peaks in attenuation58

band due to resonance coupling and band merging have been obtained in the recent state59

of art[38, 39]. Often, double peaks in stopband results in a high attenuation level for a60

wide frequency range [39, 40], which eradicates the primary shortcoming of mass-in-mass61

metamaterial that the attenuation level within the band is very low for significant parts62

of the attenuation band [32].63

Motivated by these remarkable features of the monocoupled systems, researchers stud-64

ied the coupling of various mechanisms such as effective negative mass, and stiffness [41–65

43] and a mass in mass resonator with IA to obtain double peak in attenuation band66

[40], for obtaining a wider attenuation band. Expressions of the bounding frequencies67

were reported in the literature [44–46], and the dispersion diagram can be obtained in68

the frequency domain applying Bloch-Floquet’s theory. However, the condition for the69

double peak phenomenon and the close form analytical expression for the exact location70

of the peaks in the attenuation band were still missing from the state of the art.71

A generalized monocoupled system consisting of three mechanisms, namely mass in72

mass resonator, inertial amplifier, and Helmholtz resonator, has been developed to bridge73

the mentioned research gap. This proposed generalized system can be reduced to seven74
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monocoupled subsystems by assuming corresponding mass to zero, as depicted in Fig. (2).75

Further, a general framework implementing rational polynomial is developed in this pa-76

per from which the closed form expressions for the position of attenuation peaks and77

bounding frequencies of propagation band can be identified for any undamped monocou-78

pled system. Damping is an inherent property of any material; however, its decaying79

nature is perceivable in time domain response. Wave attenuation is a phenomenon in the80

spatial domain; therefore, inherent small material damping does not significantly affect81

the characteristics of the bands, including band boundaries and attenuation peaks. Al-82

though a notable alteration in band characteristics may observe for the inclusion of high83

viscous damping and metadamping could also notice in that case [47]. From the roots of84

the denominator of the rational polynomial, the position of the peaks in the attenuation85

band and the possibility of double peaks can be identified. The novelty of the paper86

lies in realizing the monocoupled system, which can act as a generalized system for the87

majority of the monocouple systems existing in the literature, and the proposition of a88

rational polynomial based approach to predict the peaks and bounds of the attenuation89

band. Moreover, the effect on attenuation characteristics has been conceptualized by per-90

forming a parametric variation of the governing parameters. It is noteworthy that the91

developed theory is directly applicable only for the undamped monocoupled systems.92

2. The generalised mono-coupled system: Conceptualization93

In this paper, a generalized monocoupled system has been introduced, which is a94

combination of systems with an inertial amplifier, negative mass, and negative stiffness.95

Fig. (2)(a) represents a unit metamaterial cell in periodic arrangement of monocoupled96

system with combined inertial amplifier, negative mass, and negative stiffness.97
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Fig. (1). (a) Periodically connected infinitely long chain of IANMNS system, (b) Nodal degrees of
freedom of IANMNS system.

This generalized system will be called as the Inertial Amplifier Negative Mass Negative98

stiffness (IANMNS) system. Here the main chain has mass M and stiffness K. The first99

resonator with mass m1 and stiffness k1 is connected directly to main mass M . The mass100

M has another mass ma attached with rigid links to act as an inertial amplifier. The101

vertical barriers shown in Fig. (1)(a), are placed to confine the motion of inertial mass ma102

in only vertical direction. The second resonator with mass m2 and stiffness k2 is connected103

to mass ma. So here, four different masses are there in a single representative unit cell.104

This generalized IANMNS system can be reduced to seven subsystems, as illustrated in105
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Fig. (2). (a) Generalised monocoupled system Inertial Amplifier Negative Mass Negative Stiffness
(IANMNS) (b) Inertial Amplifier Negative Stiffness (IANS) system obtained by considering m1 = 0, (c)
Negative Mass Negative Stiffness (NMNS) system obtained by considering ma = 0, (d) Negative Stiffness
(NS) system obtained by considering ma = 0 and m1 = 0, (e) Inertial Amplifier Negative Mass (IANM)
system obtained by considering m2 = 0, (f) Inertial Amplifier (IA) system obtained by considering m1 = 0
and m2 = 0, (g) Negative Mass (NM) system obtained by considering ma = 0 and m2 = 0, (h) basic
monoatomic system obtained by considering ma = 0, m1 = 0 and m2 = 0.

Fig. (2)(b-h).106

2.1. Equation of motion of each mass107

The dynamic stiffness matrix can be constructed using governing equations of motion
and compatibility equations of the system. The degrees of freedom of IANMNS system
are shown in Fig. (1)-(b). The governing equations of motion at nodes 2 and 7 of resonator
mass embedded in base chain can be written as

node 2: m1ü2 + k1 (u2 − u1) = 0 (1)

node 7: m1ü7 + k1 (u7 − u8) = 0 (2)

Similarly at nodes 4 and 5, the governing equations of motion of resonators embedded in
mass (ma) connected with rigid links can be written as

node 4: m2v̈4 + k2 (v4 − v3) = 0 (3)

node 5: m2v̈5 + k2 (v5 − v6) = 0 (4)

The nodes 1 and 8, as well as nodes 3 and 6 have rigid links attached to them, which can
be modelled in terms of force (fn) and the governing equations of nodes 1, 3, 6 and 8 can
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be written as

node 1: Mü1 +K (u1 − u8) + k1 (u1 − u2) = 2 fn cosφ (5)

node 8: Mü8 +K (u8 − u1) + k1 (u8 − u7) = 2 fn cosφ (6)

node 3: mav̈3 + k2 (v3 − v4) = 2 fn sinφ (7)

node 6: mav̈6 + k2 (v6 − v5) = 2 fn sinφ (8)

Here, ¨(•) denotes two time time derivative so ¨(•) = −ω2 (•) can be written.108

2.2. Compatibility equation109

The compatibility equations of nodes 1, 3, 6 and 8 can be determined by kinematics
of rigid links as follows

Displacement at node 3: v3 =
u8 − u1
2 tanφ

(9)

and Displacement at node 6: v6 =
u1 − u8
2 tanφ

(10)

Using equations of motion of node 3, 4, 5 and 6 (Eq. (7),Eq. (3),Eq. (4) and Eq. (8));
and compatibility equations of displacements at node 3 and node 6 (Eq. (9) and Eq. (10)),
the force in rigid links can be calculated as

fn =
1

4 tanφ sinφ

(
−ma ω

2 + k2 −
k2

2

−m2 ω2 + k2

)
(u8 − u1) (11)

substituting Eq. (11) into the term (2 fn cosφ) present in governing equations of nodes 1
and 8 can be written as

ln = 2 fn cosφ =
1

2 tan2 φ

(
−ma ω

2 + k2 −
k2

2

−m2 ω2 + k2

)
(u8 − u1) (12)

2.3. Construction of Dynamic Stiffness Matrix110

The Dynamic Stiffness matrix (Dy) can be obtained as

Dy = −ω2M + K + L (13)

Where, the stiffness matrix (K) and mass matrix (M) can be formulated using equations111

of motion at node 1, 2, 7 and 8 (Eq. (5), Eq. (1), Eq. (2) and Eq. (6)). Moreover, the112

corresponding response vector u is vector of displacements at nodes 1, 2, 7 and 8113

K =


K + k1 −k1 0 −K

−k1 k1 0 0

0 0 k1 −k1
−K 0 −k1 K + k1

 , M =


M 0 0 0

0 m1 0 0

0 0 m1 0

0 0 0 M

 (14)

u =
(
u1 u2 u7 u8

)′
(15)
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Further, incorporating Eq. (12), the forces at nodes 1 and 8 due to rigid links can be
written in matrix form as

L =


ln 0 0 −ln
0 0 0 0

0 0 0 0

−ln 0 0 ln

 (16)

The dynamic stiffness matrix is obtained as

Dy =


−ω2M +K + k1 + ln −k1 0 −K − ln

−k1 −ω2m1 + k1 0 0

0 0 −ω2m1 + k1 −k1
−K − ln 0 −k1 −ω2M +K + k1 + ln


(17)

By necessary matrix manipulations the condensed Dynamic Stiffness matrix (Dyc) for
responses at node 1 and node 8 is obtained as

Dyc =

 −ω2M +K + k1 + k1
2

ω2m1−k1 + ln −K − ln

−K − ln −ω2M +K + k1 + k1
2

ω2m1−k1 + ln

 (18)

Receptance matrix of the IANMNS system can be calculated by taking inverse of the
condensed dynamic stiffness matrix Dyc

αR = D−1yc =

[
αLL αLR
αRL αRR

]
(19)

Where

αLL =
1

|Dyc|

(
−ω2M +K + k1 +

k1
2

ω2m1 − k1
+ ln

)
(20)

and αLR =
1

|Dyc|
(K + ln) (21)

and |Dyc| =
(
−ω2M +K + k1 +

k1
2

ω2m1 − k1
+ ln

)2

− (K + ln)2 (22)

Moreover, because of symmetric representative unit cell, the receptance matrix will
have [48]

αRR = αLL (23)

and due to symmetric dynamic stiffness matrix the receptance matrix will also be the
symmetric matrix so

αRL = αLR (24)

Following this method, the receptance matrix can be formulated for all the seven subsys-114

tems by assigning zero to the suitable masses as per given in Fig. (2)(b-h).115
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3. A general theory of attenuation characteristics in monocoupled system116

For the unit cell of any monocoupled system, the force displacement relationship can
be demonstrated by a receptance matrix as follows [48]{

dL
dR

}
=

[
αLL αLR
αRL αRR

] {
fL
fR

}
(25)

Further, As per Bloch theorem [2], the relation between left and right displacement as
well as force can be written as

dR = ei κ dL

fR = −ei κ fL (26)

Where, κ is a propagation constant. solving Eq. (25) and Eq. (26), the dispersion relation
can be explained as

cos(κ) =
αLL + αRR

2αLR
(27)

Further, using Eq. (23), Eq. (24) and Eq. (27), the dispersion relation for the symmetric
system can be written as

cos(κ) =
αLL
αLR

(28)

As the components of receptance matrix are functions of square of frequency, the general
statement for any monocoupled system can be written as

cos(κ) = g(ω2) = x (29)

Now,

ei κ + e−i κ = 2x

e2 i κ + 1 = 2x ei κ

e2 i κ − 2x ei κ + 1 = 0 (30)

Let A = ei κ, from Eq((30))

A = x±
√
x2 − 1 (31)

Let, solution κ = α + i β, So lnA = −β + i α. It is useful to note here that the value of
β defines the level of attenuation and α defines the phase of propagating wave. When,
x2 > 1, A is real, So when

A < 0→ lnA = ln |A|+ iπ → α = π & β = − lnA→ Attenuation

A > 0→ lnA = ln |A|+ i0→ α = 0 & β = − lnA→ Attenuation (32)

But when x2 < 1, A is complex. Now, let x = cos(δ) so the following can be derived from
Eq. (31)

A = ei κ = ei (α+i β) = cos(δ) + i sin(δ)→ α = δ = cos−1(x) & β = 0→ Propagation
(33)

From Eq. (32) and Eq. (33), it can be concluded that in case of monocoupled systems, the
wave will be purely propagating (Fig. (3)(a)) or attenuating (Fig. (3)(b)) because the wave
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number can not have simultaneous non zero imaginary and real values. The simultaneous
non zero imaginary and real values will cause fluctuating attenuation (Fig. (3)(c)), which
is impossible in the case of monocoupled systems. Any monocoupled system can be
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Fig. (3). Displacement patterns for different types of responses (a) pure propagation (b) pure attenuation
(c) fluctuating attenuation

generalised in terms of effective mass (Meff ) and effective stiffness (Keff ), by comparing
it to the mono-atomic chain given in Fig. (2)(h). So, the generalised dispersion equation
can be obtained as [7]

cos(κ) = 1− ω2Meff

Keff

(34)

Here, the effective mass and stiffness are also the functions of ω2. The rational polynomial
equation for dispersion relation of any monocoupled system can be obtained as

g(ω2) = 1 +
R(ω2)

Q(ω2)
(35)

From the roots and poles of rational polynomial Eq. (35), the salient features of band
structure like peak in attenuation and bounding frequencies can be obtained. First, the
peaks in the attenuation band occur when g(ω2) → ∞, which exists at the poles of
Eq. (35), which are the roots of

Q(ω2) = 0 (36)

Further, the propagation boundaries occur when g(ω2) = ± 1 (at roots of Eq. (35)), which
results in two equations such as

1 +
R(ω2)

Q(ω2)
= 1 → R(ω2) = 0 (37)

1 +
R(ω2)

Q(ω2)
= −1 → R(ω2) + 2Q(ω2) = 0 (38)

As this monocoupled system is semi definite, the propagation zone will start from zero117

frequency. So Eq. (37) or Eq. (38) will have zero as its one root, and other roots will118

define bounds of propagation or attenuation bands.119

4. Non-Dimensional form and various mono coupled systems120

The non-dimensional form of the dispersion relation of the IANMNS system is depen-121

dent on the following governing nondimensional parameters:122
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• η = ω√
K/M

. Free wave frequency ratio (η) expressed as ratio of free wave frequency123

(ω) and natural frequency of main chain
√
K/M .124

• θ = ma

M
. Inertial mass ratio (θ) defined as the ratio of the inertial mass ma with the125

mass at the main chain M .126

• θr1 = m1

M
. Mass ratio (θr1) is defined as the ratio of the mass of resonator embedded127

in main chain and main mass.128

• ηr1 =

√
k1/m1√
K/M

. Frequency ratio of the resonator one attached to the main chain129

is defined as ratio of the natural frequency of the first resonator with the natural130

frequency of the main chain (
√
K/M).131

• θr2 = m2

M
. Mass ratio (θr2) is defined as the ratio of the mass of resonator two (m2)132

and main mass M .133

• ηr2 =

√
k2/m2√
K/M

. Frequency ratio of the resonator two is defined as ratio of the natural134

frequency of the second resonator with the natural frequency of the main chain135

(
√
K/M).136

• γ = tan2 φ. angular parameter γ is the square of a tangent of the angle made by137

rigid links with x-axis in the anticlockwise direction.138

4.1. Peak in attenuation level and bounds of propagation band139

For the IANMNS system, the equation of dispersion relation in the form of Eq. (35)
is obtained from Eq. (20) and Eq. (28) in nondimentional parameters, where Q(η2) and
R(η2) are

R(η2) = R3η
6 +R2η

4 +R1η
2 +R0

and Q(η2) = Q3η
6 +Q2η

4 +Q1η
2 +Q0 (39)

where, the coefficients of equation R = 0 are

R3 = −2 γ

R2 = 2 γ ηr2
2 + 2 γ

(
ηr1

2θr1 + ηr1
2
)

R1 = −2 γ
(
ηr1

2θr1 + ηr1
2
)
ηr2

2

and R0 = 0 (40)

The coefficients of equation Q = 0 are

Q3 = −θ
Q2 = ηr1

2θ + ηr2
2θ + ηr2

2 θr2 + 2 γ

Q1 =
(
−ηr2 2θ − ηr2 2 θr2 − 2 γ

)
ηr1

2 − 2 γ ηr2
2

and Q0 = 2 γ ηr1
2ηr2

2 (41)

To study the possible number of peaks present in a single attenuation band, roots of any140

one boundary equation (that is R = 0 or R + 2Q = 0) and attenuation peak equation141
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(that is Q = 0) is necessary. Analytically roots of all three equations can be obtained,142

however here we have given solution for only two equations i.e. Q = 0 and R = 0, as143

closed form solution of R + 2Q = 0 is complicated to write for IANMNS system.144

The roots of Q = 0 are

q1 = ηr1

q2, q3 =

√
1

2 θ

(
ηr2 2 (θ + θr2 ) + 2 γ ±

√
(ηr2 2 (θ + θr2 ) + 2 γ)2 − 8 ηr2 2γ θ

)
(42)

It can be concluded from the roots of equation Q = 0 that, the root q1 is obtained from
natural frequency of mass in mass resonator and q2 and q3 are result of combined effects
of inertial amplifier and negative stiffness resonator. As R0 = 0, its first root is η = 0,
which shows the starting of propagation zone. Roots of R = 0 are

r1 = 0

r2 = ηr2

r3 =
√
ηr1 2θr1 + ηr1 2 = ηr1

√
(1 + θr1) (43)

The roots r2 and r3 are boundaries of dispersion diagram. The positions of these roots145

are such that all three peaks of attenuation can never be in a single attenuation band146

(proved in Appendix A).147

Further, by placing zero value to the non required mass into the dynamic stiffness
matrix of IANMNS system as per given in Fig. (2); the Q and R equations and their
roots corresponding to all obtained systems are obtained in Table 1. Following are the
variables name given to the roots according to their reason of existence

ξ1 =

√
1

2 θ

(
ηr2 2 (θ + θr2 ) + 2 γ −

√
(ηr2 2 (θ + θr2 ) + 2 γ)2 − 8 ηr2 2γ θ

)
(44)

ξ2 =

√
1

2 θ

(
ηr2 2 (θ + θr2 ) + 2 γ +

√
(ηr2 2 (θ + θr2 ) + 2 γ)2 − 8 ηr2 2γ θ

)
(45)

ξNS =

√
2 γ ηr2 2

ηr2 2θr2 + 2 γ
(46)

ξNM = ηr1 (47)

and ξIA =

√
2 γ

θ
(48)

By observing the equations of ξ1 and ξ2, it can be concluded that they are independent148

of the first resonator and the mechanism of the embedded resonator in the attached149

inertial amplifier gives rise to two peaks (ξ1 and ξ2) in attenuation band. The root of the150

system when the second resonator is directly connected with the rigid link is given by151

the equation of ξNS, which is only dependant on the angle of the rigid link and second152

resonator. Similarly, when the first resonator is attached to main mass M , the peak in153

attenuation band can be observed at ξNM , and in the case of the only inertial amplifier,154

the attenuation peak is developed at ξIA. It is noteworthy that the roots of the IANS155

system are different from the roots of the IA and NS systems, as the IANS system is the156
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Table 1. Closed form solution of the roots of the governing polynomials. The labels in first column
corresponds to the systems given in Fig. (2)(a-h)

System
Roots of Q = 0 Roots of R = 0
q1 q2 q3 r1 r2 r3

a IANMNS ξ1 ξ2 ξNM 0 ζr1 ζr2
as IANMNS special ξ1 ξ2 — 0 ζr1 —
b IANS ξ1 ξ2 — 0 ζr2 —
c NMNS ξNS ξNM — 0 ζr1 ζr2
d NS ξNS — — 0 ζr2 —
e IANM ξNM ξIA — 0 ζr1 —
f IA ξIA — — 0 — —
g NM ξNM — — 0 ζr1 —
h Monoatomic — — — 0 — —

coupling of the IA and NS systems. However, when the NM system is associated with157

any IANS, IA, or NS system, the roots remain independent of each other as they are not158

coupled.159

The roots of equation R are defined as following

ζr1 = ηr1
√

(1 + θr1) (49)

and ζr2 = ηr2 (50)

The root ζr1 is due to first resonator and ζr2 is due to the second resonator.160

5. Validation161

The dispersion relation of few subsystems of IANMNS has been obtained in literature162

using different methods. The band boundaries and attenuation peaks are key features163

of this dispersion diagrams. In this section, the roots of equation Q = 0 to locate the164

attenuation peaks and and roots of the equations R = 0 and R + 2Q = 0 to locate165

band boundaries has been obtained for few subsystems and validated with corresponding166

literature.167

First, the dispersion characteristics of subsystem consists of effective negative mass168

negative stiffness mechanism (NMNS) has been obtained. The input parameters as per169

[41, 49] has been chosen and given in dimensional form in Table 2. The locations of170

band boundaries are clearly mentioned in [41] and locations of attenuation peaks are171

shown in [49], which are tabulated in Table 3. The results obtained by proposed method172

are converted into nondimentional frequency as per the literature, and are tabulated in173

Table 3.174

Further, the dispersion characteristics of subsystem consists of inertial amplifier with175

effective negative mass mechanism (IANM) has been obtained. The particular set of176

system parameters has been chosen (Table 2 as an example for the purpose of validation177

from [40]. The dispersion plot has been given in literature, from that the approximate178

values of dimensionless frequency has been written in Table 3. The exact analytical179

values has been obtained in Table 3 using the proposed method and they are written in180
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Table 2. Input data for validation

Subsystems M ma m1 m2 K k1 k2 tanφ
NMNS[41, 49] 1 1.5 1 — 1 0.1 1 0.6

IANM[40] 1 4 2 — 1 8 — 1
NM[23, 30] 0.1011 — 0.4647 — 117 74 — —

Table 3. Attenuation characteristics as per literature(lit*) and proposed(pro*) method

Subsystems NMNS IANM NM
Lit* Pro* Lit* Pro* Lit* Pro*

Attenuation Peaks
p1 1 1 0.7 0.7071 6.3 6.351
p2 1.1 1.066 2 2 — —

Band Boundaries

b1 0 0 0 0 0 0
b2 0.9 0.986 0.5 0.529 5.8 5.749
b3 1.6 1.581 2.4 2.392 7.6 7.673
b4 2.5 2.449 3.5 3.464 — —
b5 3.9 3.873 — — — —

Dispersion Plot

b5b4b3b1 b2

p1 p2

b4b1 b3b1 b2

dimensionless frequency as per literature.181

Additionally, the dispersion characteristics of subsystem consists of effective negative182

mass mechanism (NM) has been obtained. The experimental study of a monocoupled183

system with negative mass mechanism has been done by [23] and that has been used184

for validation in [30]. The same example (Table 2) has been used here for validation.185

The band characteristics obtained in literature are as per Table 3. The results obtain by186

proposed method (Table 3) are in good agreement with the band characteristics obtain187

in literature.188

The dispersion plot for all three subsystems has been obtained and demonstrated in189

Table 3.190

6. Results and Discussions191

In this section, contour plots of attenuation levels are plotted for the generalized192

IANMNS system and all the other systems derived from it. The silver, blue, and green193

dashed lines in all the contour plots depict the roots of the equation Eq. (36), Eq. (37)194

and Eq. (38) respectively, which corresponds to the position of peaks in attenuation band195

and boundaries of dispersion diagram. The values of the governing parameters used for196

the analysis of each derived system are given in table Table 4. Additionally, the number197

of attenuation peaks in the dispersion diagram as well as the possibilities of the double198

peak in a single attenuation band is incorporated in Table 4.199
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Table 4. systems and the values of their governing nondimentional parameters with possibility of double
peak phenomenon. The labels in first column corresponds to the systems given in Fig. (2)(a-h)

System
Nondimentional Paramaters Attenuation characteristics
θ θr1 θr2 ηr1 ηr2 γ Peaks double peak

a IANMNS 1 3 0.25 0-5 2 1 3 Y
as IANMNS special 1 3 0.25 0-5 0-5 1 2 Y
b IANS 1 — 0.25 — 0-5 1 2 N
c NMNS — 3 0.25 0-5 2 1 2 Y
d NS — — 0.25 — 0-5 1 1 N
e IANM 1 3 — 0-5 — 1 2 Y
f IA 0-5 — — — — 1 1 N
g NM — 3 — 0-5 — — 1 N
h Monoatomic — — — — — — 0 N

6.1. Inertial amplifier negative mass negative stiffness (IANMNS)200

Figure (4)(e) illustrates the contour of attenuation level with respect to natural fre-201

quency of mass in mass resonator (ηr1) and Fig. (4)(a-d) illustrates the dispersion relations202

for particular values of ηr1 (as shown with pink dash-dot line in Fig. (4)(e)) for enhanced203

comprehension about the bandgap and level of attenuation within the attenuation band.204

In Fig. (4)(a) at ηr1 = 0.5, the roots of equations R(η2) = 0 and Q(η2) = 0 are occurring205

alternatively (0 < ξNM < ζr1 < ξ1 < ζr2 < ξ2), so the peaks in attenuation band are in206

separate attenuation zones. As the natural frequency of mass in mass resonator increases207

and crosses the value ξ1, the positions of roots changes and the double peak phenomenon208

can be obtained in the first attenuation band (Fig. (4)(b)). Further upon increasing ηr1209

to the value of ηr2 the second propagation band merges and two separate peaks of at-210

tenuation band falls in a single attenuation band resulting wide band gap (Fig. (4)(c)).211

This concludes that by having same roots of Q = 0 and R = 0 (ξNM = ζr2), they will be212

canceled out and band merging will take place. further, When ηr1 > ηr2 the double peak213

will shift to the next attenuation band (Fig. (4)(d)).214
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(a) (b)

(c) (d)

(e)

ξ2

ξ�

ξNM

ξ1

ϛr1

ϛr2

ξξ

ξN NMξ

ϛ

Fig. (4). The figure corresponds to IANMNS system (given in Fig. (2)-(a)), with values of governing
parameters θ = 1; θr1 = 3, θr2 = 0.25, ηr2 = 2, γ = 1 and varying ηr1 from 0 to 5. The contour plot for
frequency ratio η varying from 0 to 5 versus ηr1 is shown in (e). In this figure (e) the silver, blue and green
dashed lines depicts the roots of equations Q(η2) = 0, R(η2) = 0, and R(η2) + 2Q(η2) = 0 respectively.
The (a), (b), (c) and (d) figures demonstrates the dispersion relation for the IANMNS system at sections
drawn by pink lines at ηr1 = 0.5, 1.5, 2 and 3.5 respectively.

6.2. Inertial amplifier negative mass negative stiffness (IANMNS) special case215

As it has been observed in Fig. (4)(c), that by keeping both the resonators of the216

IANMNS system at the same frequency, the band merging will give a wide band. This217

phenomenon is observed in detail by varying the natural frequency of resonators from218

0 to 5. The contour of attenuation level is plotted for this special case in Fig. (5)(e).219

Fig. (5)(a,b,c and d) illustrates the dispersion relation for IANMNS special case for res-220

onators with different frequencies ηr1 = 0.5, 1.5, 2 and 3.5 respectively. In Fig. (5)(a)221

the roots position is 0 < ξ1 < ζr1 < ξ2, so attenuation peaks will occur in separate atten-222

uation bands. By increasing resonators’ frequency ηr1, as ζr1 > ξ2 the root position will223

shift to 0 < ξ1 < ξ2 < ζr1 which results in double peak in first attenuation band. From224

Fig. (5)(b, c, and d), it can be observed that by increasing the frequency of the resonator,225

the first attenuation band gets wider, and due to the double peak phenomenon, the higher226

attenuation level is observed for broad frequency range.227
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(a) (b)

(c) (d)

(e)

ϛ

r1

ξ1

ξ2

ϛr1

Fig. (5). IANMNS special case(with both the resonators with same frequencies (ηr1 = ηr2)). system (given
in Fig. (2)-(a)), with values of governing parameters θ = 1; θr1 = 3, θr2 = 0.25, γ = 1 and varying ηr1 = ηr2
from 0 to 5. The contour plot for frequency ratio η varying from 0 to 5 versus ηr1 is shown in (e). In this
figure (e) the silver, blue and green dashed lines depicts the roots of equations Q(η2) = 0, R(η2) = 0,
and R(η2) + 2Q(η2) = 0 respectively. The (a), (b), (c) and (d) figures demonstrates the dispersion
relation for the IANMNS special case system at sections drawn by pink lines at ηr1 = 0.5, 1.5, 2 and 3.5
respectively.

6.3. Negative mass negative stiffness (NMNS)228

Figure (6)(e) illustrates the contour of attenuation level of NMNS system (given in229

Fig. (2)-(c)) with varying frequency of mass in mass resonator (ηr1) from 0 to 5. Fig. (6)(a-230

d) illustrates the dispersion relations at natural frequencies of mass in mass resonator231

(ηr1) at 0.5, 1, 2 and 2.75 respectively. Fig. (6)(a) depicts that till root ζr1 < ξNS, the232

attenuation band will have single peaks. By increasing ηr1 further (Fig. (6)(b)), the double233

peak in first attenuation band occurs as root ζr1 > ξNS. Moreover as the roots ζr1 = ζr2,234

the merging of propagation band can be observed. In Fig. (6)(c), the root ζr2 = ξNM235

results in wider attenuation band with single peak. Fig. (6)(d) demonstrates that root236

position ξNS < ζr2 < ξNM results in single peaks in attenuation bands.237
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ξNSξNM ξN ξNS

ξ

ϛr1 ϛr2 ϛr

ϛr1ϛr2

(a) (b)

(c) (d)

(e)

ξNMξNS

Fig. (6). NMNS system (given in Fig. (2)-(c)), with values of governing parameters θr1 = 3, θr2 =
0.25, ηr2 = 2, γ = 1 and varying ηr1 from 0 to 5. The contour plot for frequency ratio η varying from
0 to 5 versus ηr1 is shown in (e). In this figure (e) the silver, blue and green dashed lines depicts the
roots of equations Q(η2) = 0, R(η2) = 0, and R(η2) + 2Q(η2) = 0 respectively. The (a), (b), (c) and
(d) figures demonstrates the dispersion relation for the NMNS system at sections drawn by pink lines at
ηr1 = 0.5, 1.5, 2 and 3.5 respectively.

6.4. Inertial amplifier negative mass (IANM)238

The contour of attenuation level of IANM system (given in Fig. (2)-(e)) with varying239

frequency of mass in mass resonator (ηr1) from 0 to 5 is shown in Fig. (7)(e). The240

dispersion relations at natural frequencies of mass in mass resonator (ηr1) at 0.5, 1, 2241

and 2.75 respectively are demonstrated in Fig. (7)(a-d). Fig. (7)(a) depicts that till242

roots position is ξNM < ζr1 < ξIA, the attenuation band will have single peaks. By243

increasing ηr1 further (Fig. (7)(b)), the double peak in first attenuation band occurs244

as roots ξNM < ξIA < ζr1. In Fig. (7)(c) and (d), the root positions ξIA < ξNM < ζr1245

showing double peak can be observed and also the attenuation band gets wider as increase246

in natural frequency of mass in mass resonator.247
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ξ

ϛr1

ξNM

ξ M

ξN IA

ξNM

ξIA

ϛr1

(a) (b)

(c) (d)

(e)

Fig. (7). IANM system (given in Fig. (2)-(e)), with values of governing parameters θ = 1, θr1 = 3, γ = 1
and varying ηr1 from 0 to 5. The contour plot for frequency ratio η varying from 0 to 5 versus ηr1 is shown
in (e). In this figure (e) the silver, blue and green dashed lines depicts the roots of equations Q(η2) = 0,
R(η2) = 0, and R(η2) + 2Q(η2) = 0 respectively. The (a), (b), (c) and (d) figures demonstrates the
dispersion relation for the IANM system at sections drawn by pink lines at ηr1 = 0.5, 1.5, 2 and 2.75
respectively.

The attenuation level contours of systems IANS (Fig. (2)-(b)), NS (Fig. (2)-(d)),248

IA(Fig. (2)-(f)), NM (Fig. (2)-(g)) are demonstrated in Fig. (8)(a), (b), (c) and (d) re-249

spectively. In IANS system, the two attenuation peaks are present but due to the coupling250

of IA and NS, the natural frequency of resonator always falls in between the two roots of251

Q = 0 which separates the attenuation bands Fig. (8)(a). In case of NS system, the po-252

sitions of attenuation peak (ξNS) and bound of propagation band (ζr2) is shown by silver253

and blue line in Fig. (8)(b). Similarly the peak (ξIA) in attenuation band for IA is shown254

with silver line in Fig. (8)(c) and Fig. (8)(d) illustrates the peak (ξNM) in attenuation255

band and bound (ζr1) of propagation for NM system.256
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(a) (b)

(c) (d)

ξ1

ξ2

ξNS

ξIA

ξNM

ϛr� ϛr�

ϛr1

Fig. (8). (a): System -IANS (given in Fig. (2)-(b)), (b): System -NS (given in Fig. (2)-(d)), (c): System
-IA (given in Fig. (2)-(f)), (d): System -NM (given in Fig. (2)-(g)), Here silver, blue and green dashed
lines are roots of equations Q(η2) = 0, R(η2) = 0, and R(η2) + 2Q(η2) = 0 respectively.

7. Summary257

The main observations of the results are summarized as follows:258

1. In the IANMNS system, a maximum three number of attenuation peaks are possible.259

Among them, two peaks occur due to the inertial amplifier negative stiffness (IANS)260

system and the third one due to the negative mass (NM) system. However, these261

three peaks can never be in a single attenuation band, but double peaks in a single262

attenuation band are possible for several cases.263

2. A special IANMNS system, having both resonators with the same natural frequen-264

cies, results in a wide bandgap with double attenuation peaks due to the band265

merging phenomenon.266

3. The IANM system also results in a wider band of high attenuation level due to267

double peak in the attenuation band.268

4. The expressions of attenuation peaks are mainly due to the four basic mechanisms:269

IANS, NM, NS, and inertial amplifier (IA). The IANS system does not possess direct270

roots from IA and NS as they are coupled. Nevertheless, the positions of peaks in271
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the IANM system can be directly derived from NM and IA systems as they are272

independent.273

5. While the natural frequencies of both the resonators are same (ηr1 = ηr2), then the274

attenuation bands merge. On the other hand, the propagation band merges if the275

equation of bounds has two roots with the same values.276

6. The proper tuning of the parameters of the IANMNS, negative mass negative stiff-277

ness (NMNS), and IANM systems may make them capable of obtaining double278

peaks in a single attenuation band. This phenomenon is desired in obtaining an279

attenuation bandgap with a significant attenuation level.280

The overall criteria for separate attenuation peaks, double peaks phenomenon, and band281

merging have been illustrated for IANMNS and its seven subsystems.282

8. Conclusion283

In this paper, a generalized monocoupled system inertial amplifier negative mass neg-284

ative stiffness (IANMNS) has been developed by coupling several different mechanisms285

of systems, such as an inertial amplifier, effective negative mass, and stiffness. Different286

types of unit cells of monocoupled systems analyzed in the literature can be obtained by287

assigning zero values to the specific masses.288

A general theory has been developed to locate the positions and numbers of attenua-289

tion peaks as well as bounding frequencies of the propagation band of any monocoupled290

system using the rational polynomial equation of its dispersion relation. Exact closed-form291

analytical expressions for the attenuation peaks and boundaries of the dispersion diagram292

for the IANMNS system and seven other subsystems are obtained. Key contributions of293

the paper include:294

• Wave propagation and dispersion equations are analyzed in several papers adopting295

an effective medium approach, transfer matrix approach, etc. These existing meth-296

ods primarily yield the boundaries of the band, but they are unable to locate the297

attenuation peaks or the existence of the peak or coupling of the peaks within the298

attenuation band. Recently, this coupling of the attenuation peaks received very299

significant attention as it ensures a certain level of attenuation throughout the at-300

tenuation band. To overcome the above mentioned problem, the proposed rational301

polynomial approach is developed in this paper, which can locate the attenuation302

peaks and band boundaries. Moreover, it provides a mathematical basis for the303

coupling of band gaps obtained from the different band formation mechanisms.304

• Perceiving a generalized inertial amplifier negative mass negative stiffness (IAN-305

MNS) monocoupled system from which seven monocoupled subsystems emerge as306

special cases.307

• The general theory for obtaining the closed-form expressions employing the con-308

cept of roots and poles of a rational polynomial of dispersion relation has been309

communicated.310
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• The attenuation characteristics, such as bounds of the band gaps, location of the311

peaks in the attenuation band of the seven monocoupled subsystems, and the source,312

IANMNS, are compared.313

Based on these findings, future monocoupled systems can be designed and specifically314

tuned for the required bandwidth and attenuation level by combining different mechanisms315

elicited in the paper.316
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Appendix A. Roots positions of IANMNS system428

The equations of roots of IANMNS system are given in Eq. (42) and Eq. (43). from
roots q1 and r3, it can be seen that when

θr1 ≥ 0 → ηr1
√

(θr1 + 1) ≥ ηr1 → r3 ≥ q1 A.1

To see the positions of roots q2 and q3 with respect to r2, r
2
2 is subtracted from roots q22

and q23

q22 − r22 =
1

2 θ

(
−ηr2 2 θ + ηr2

2θr2 + 2 γ −
√

(−ηr2 2θ + ηr2 2 θr2 + 2 γ)2 + 4 ηr2 4θ2θr2

)
q23 − r22 =

1

2 θ

(
−ηr2 2 θ + ηr2

2θr2 + 2 γ +

√
(−ηr2 2θ + ηr2 2 θr2 + 2 γ)2 + 4 ηr2 4θ2θr2

)
A.2

Now

4 ηr2
4θ2θr2 ≥ 0 A.3(

(−ηr2 2 θ + ηr2
2θr2 + 2 γ

)2︸ ︷︷ ︸
χ2

+4 ηr2
4θ2θr2 ≥

(
(−ηr2 2 θ + ηr2

2θr2 + 2 γ
)2︸ ︷︷ ︸

χ2

A.4

χ2 ≤ χ2 + 4 ηr2
4θ2θr2 A.5

Further it can be simplified as

−
√
χ2 + 4 ηr2 4θ2θr2 ≤ −χ ≤

√
χ2 + 4 ηr2 4θ2θr2 A.6

χ−
√
χ2 + 4 ηr2 4θ2θr2 ≤ 0 ≤ χ+

√
χ2 + 4 ηr2 4θ2θr2 A.7

q22 − r22 < 0 < q23 − r22
q22 < r22 < q23
q2 < r2 < q3 A.8

From Eq. A.8, it can be concluded that one boundary of the attenuation band lies be-429

tween two attenuation peaks, which is the reason that in a single attenuation band, three430

attenuation peaks can not occur.431
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If r2 < r3 i.e. ηr2 < ηr1
√
θr1 + 1, then root q2 will always lie between r1 to r2 and432

root q3 will always lie between r2 to r3, and as q1 < r3, this condition leads the system to433

have two peaks in its first attenuation band if q1 < r2 or in its second attenuation band434

if q1 > r2. If r3 < r2 i.e. ηr1
√
θr1 + 1 < ηr2, then first q1 will be the peak in attenuation435

band, but for q2 there are two possibilities436

• r1 < q2 < r3 double peak can be seen in first attenuation band437

• r3 < q2 < r2 double peak is not possible as r2 < q3.438
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