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Abstract: In this paper, flexural wave propagation, at-
tenuation and reflection through finite number of rigid
elastic combined meta-beam (RECM) elements sandwiched
between two Euler Bernoulli beams has been studied,
implementing the spectral element, inverse Fourier trans-
form and transfer matrix method. Spectral element has
been formulated for the unit representative cell of RECM
employing the rigid-body dynamics. Governing dimen-
sionless parameters are identified. Further, the sensitivity
analysis has been carried out to comprehend the influence
of non-dimensional parameters such as mass ratio, length
ratio, and rotary inertia ratio on the attenuation profile.
Rotary inertia of rigid body produces Local resonance(LR)
band, which may abridge the gap between the two Bragg
Scattering(BS) bands and results in an ultra-wide stop-band
for the specific combination of governing non-dimensional
parameters. 164% normalized attenuation band is possible
to obtain in RECM. Natural frequencies for the finite RECM
have also been evaluated from the global spectral element
matrix and observed that some natural frequencies lies in
the attenuation band. Therefore, the level of attenuation near
that natural frequencies is significantly less and cannot be
identified from the dispersion diagram of the infinite RECM.

Keywords: Spectral element method; Rigid body dy-
namics; Transfer matrix; Dispersion relationship; Band
structure; Attenuation profile

1 Introduction
In the past few decades, the study of flexural wave

propagation through periodic structures has gained assiduity
because of its ability to filter out unwanted frequencies
[1,2,3,4,5,6]. Depending on properties of the representative
unit cell, wave of some frequency may propagate (pass or
propagation band) and some may attenuate (stop or attenua-
tion band) [7]. This correlation between excitation frequency
and wave number is called dispersion relationship [8]. The

dispersion relationship can be characterized from the con-
stituents of the representative unit cell like stiffness, damp-
ing, mass etc [9]. Bragg scattering (BS) [10], local res-
onance (LR) [11] and inertial amplification (IA) [12] are
primary mechanisms of stop band creation. BS band oc-
curs due to negative interference; whereas, LR band origi-
nates due to out of phase resonance in a beam [13]. The
need of wider bandwidth has driven the research towards the
merging of several band-gaps originated from the different
physics, such as, use of inertia [14], inertial amplifier [15],
periodic resonators [16,17,18,19], negative stiffness [20] etc.
The band structure characteristic in infinitely long beam in-
corporating non-linearity [21], linear variation in mass and
stiffness [22, 23], geometric variation in beam [10] etc has
been explored in the past. However, no study in the field of
wave propagation through the rigid elastic combined meta-
beam(RECM) considering the finite dimension of the rigid
mass was reported.

In this paper, the band structure characteristics for in-
finitely long RECM, as shown in Figure 1(a), is studied. The
dispersion relationship of one-dimensional periodic struc-
tures can be obtained very efficiently by evaluating loga-
rithms of eigenvalues of the transfer matrix of the represen-
tative cell [18]. To obtain the transfer matrix, the exact an-
alytical solution of a periodic cell has been obtained using
spectral element method [24, 25, 26].

The rigid-elastic combination were established adopting
the conventional assembling techniques of spectral element
matrix or dynamics stiffness matrix [27, 28, 29, 30, 31] and
finite element method [32]. The representative unit cell is
considered as illustrated in Figure 1(b). The displacement
continuity and force equilibrium equations in rigid body is
calculated to obtain condensed spectral element matrix. To
validate the spectral element formulation, a repeating unit
cell has been considered as illustrated in Figure 4(a) and its
modal frequencies were matched with solution obtained by
reference [28]. The obtained spectral element matrix has
been converted into transfer matrix to get the band struc-



ture. The influence of the nondimentional parameters of rigid
body on band structure characteristics of RECM beam has
been investigated in this study. The finite system of a few
RECM elements has been constructed to get the frequency
response function (FRF). Study of both finite and infinite
structures unable us to get the detailed understanding of at-
tenuation characteristics. Further, The flexural wave prop-
agation through two Euler Bernoulli beams connected by
eight RECM elements is analysed and using inverse Fourier
transform the space-time response is plotted to visualise the
wave dispersion. Development of analytical expression for
the spectral element matrix of RECM unit cell, observation
of the natural frequencies in the attenuation band and visu-
alization of the flexural dispersive wave propagation, attenu-
ation and reflection through RECM are the salient attributes
of the paper.
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Fig. 1: (a) The Infinite Rigid Elastic combined meta(RECM)
beam, (b) The representative unit cell of RECM beam
(where, EI is flexural rigidity, A is area of cross section, l1
and l2 are lengths of elastic and rigid part of beam respec-
tively, M is mass and J is rotary inertia of rigid body and L is
total length of a unit cell)and (c) Free body diagram of unit
cell of RECM beam (where, Mi and Vi are moment and shear
force at ith node, θc and yc are slope and displacement at the
center of rigid body)

2 Methodology
The representative unit cell (Figure 1(b)) has two ele-

ments, first is elastic beam element of length l1, connected
by node 1-2 and another is rigid body of length l2, connected
by node 2-3. As it is a beam element each node has two de-
grees of freedom, vertical displacement and rotation. vertical
displacement in upward direction and rotation in anti clock-
wise direction is assumed to be positive.

2.1 Governing equation
The elastic part of beam is assumed to be following Eu-

ler Bernoulli beam theory. The governing elastic beam equa-
tion can be written as:

EI
∂4w̃
∂z̃4 +ρA

∂2w̃
∂t̃2 = 0 (1)

where, w̃ denotes deflection in z̃ (transverse) axis and t̃ rep-
resents time. For obtaining non-dimensional equations, sub-
stituting z̃ = z l1, t = ωn t̃, w̃ = W w(z, t) (W is an arbitrary
constant), ω2

n = EI/ρAl4
1 , η = ω/ωn and the solution is as-

sumed to be ˜w(z, t) =Y (z)eiηt in Equation 1. [18]. The beam
equation can be obtained as a spacial ODE as:

Y IV (z)−η
2Y (z) = 0 (2)

The general solution of spacial ODE is considered as:

Y (z) = φ(z)C (3)

where, λ =
√

η, C =
{

C1 C2 C3 C4

}T
and φ(z) =

[cos(λz) sin(λz) cosh(λz) sinh(λz) ]

2.2 Spectral element formulation
Spectral element matrix(SEM) of representative unit cell

has been formulated by first developing SEM of elastic part
of RECM [25]. Each node of beam has four states: displace-
ment y(z), slope θ(z), bending moment M(z) and shear force
V (z). That are defined as follows:

y(z) = Y (z),θ(z) =
1
l1

Y ′(z),

M(z) =
EI
l2
1

Y ′′(z),V (z) =
EI
l3
1

Y ′′′(z) (4)

The spectral nodal displacement and slope can be related to
displacement field by

U = HC =⇒C = H−1U (5)

where, U =
{

y1 θ1 y2 θ2

}T
and

H =


1 0 1 0

0 λ

l1
0 λ

l1

cos(λ) sin(λ) cosh(λ) sinh(λ)

− sin(λ)λ
l1

cos(λ)λ
l1

sinh(λ)λ
l1

λ cosh(λ)
l1


The shape function for displacement can be obtained by sub-
stituting constant vector C from Equation 5 in to Equation 3.

Y (z) = N(z)U (6)

where, shape function N(z) = φ(z)H−1.The nodal forces can
be defined as

F =
{

V1 M1 V2 M2

}T

=
{

V (0) −M(0) −V (1) M(1)
}T

(7)



Now, Equation 4 can be substituted in Equation 7 to ob-
tain the spectral element equation F = SU of elastic beam.
Where, spectral element matrix,

S = f


S11 S12 S13 S14

S12 S22 −S14 S24

S13 −S14 S11 −S12

S14 S24 −S12 S22

 (8)

in which, f = EI
l13(1−cch)

, S11 = λ3 (shc+ chs), S12 = l1λ2shs,

S13 =−λ3 (sh+ s),
S14 =−l1λ2 (c− ch), S22 =−l12

λ (shc− chs),
S24 =−l12

λ (s− sh), c = cos(λ), ch = cosh(λ),
s = sin(λ), sh = sinh(λ).
The concept of rigid body dynamics can be applied from the
free body diagram illustrated in Figure 1(c). The relation be-
tween states of node 2 and node 3 can be defined using com-
patibility and force equilibrium equations. The equation of
displacement and rotation compatibility condition is as fol-
lows:

 y2

θ2

=

1 −l2

0 1


 y3

θ3

 (9)

The dynamic equation for force equilibrium can be written
as follows:

 V3

M3

=

 1 0

−l2 1


 V2

M2


−ω

2
nλ

4

 m −ml2
2

−ml2
2 J+ ml22

4


 y3

θ3

 (10)

The dimensionless parameters length ratio ξ = l2/l1, mass
ratio µ = M/ρAl1 and rotary inertia ratio Ψ = J/Ml2

2 has
been substituted in the equations 8, 9 and 10 to obtain non-
dimensional spectral element. Knowing the relation between
all states of nodes 1, 2 and 3; the spectral element of com-
plete representative unit cell (Figure 1(b)) can be obtained as
Equation 11.



V1

M1

V3

M3


= K



y1

θ1

y3

θ3


(11)

where, The spectral element matrix,

K = f


K11 K12 K13 K14

K12 K22 K23 K24

K13 K23 K33 K34

K14 K24 K34 K44

 (12)

K11 = λ
3 (shc+ chs) ,K12 = l1λ

2shs,

K13 =−λ
3 (sh+ s) ,K14 =−ξK13−K23,

K22 =−l2
1λ (shc− chs) ,K23 = l1λ

2 (−ch+ c) ,

K24 =−ξl1K23−λ (−sh+ s) l12,

K33 = λ
3 (µ (cch−1)λ

)
+K11,

K34 =−l1λ
2

(
µξ (cch−1)λ2

2

)
− l1ξK11−K12,

K44 = l2
1λ

((
ψ+

1
4

)
µ (cch−1)ξ

2
λ

3

)
+ l2

1ξ
2K11 +2ξl1K12 +K22

2.3 Dispersion relation
The dispersion relationship can be computed very eas-

ily by solving eigen values of a transfer matrix. The transfer
matrix is a matrix relating the states of end nodes of a rep-
resentative unit cell. The spectral element matrix given in
Equation 12 can be converted to transfer matrix Ts by [25]:

Ts =

 −K−1
LR KLL −KLR

−1

KRL−KRRKLR
−1KLL −KRRKLR

−1

 (13)

where, KLL =

K11 K12

K21 K22

, similarly KLR,KRL and KRR are

three quadrants of spectral element matrix K.
From Equation 14 and 15, following eigenvalue problem can
be obtained [18]. The wave number corresponding to fre-
quency ratio can be easily determined from transfer matrix
using Bloch-Floquet’s theorem (Equation 14).

εn(1) = e−iκIεn−1(1)→ εn(1) = e−iκIεn(3) (14)

where, εn(i) =
{

yi θi Vi Mi

}T
is vector of states of element

n at node i. The relation between states of node 1 and 3 can
be written in matrix form using transfer matrix as:

εn(1) = Ts εn(3) (15)

From Equation 14 and Equation 16, the dispersion relation
can be obtained as:
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Fig. 2: Finite RECM beam chain

|Ts− e−iκI|= 0→ κ = i ln(eig(Ts)) (16)

The total degrees of freedom of a unit cell is four but after ap-
plying Bloch’s theorem it has been reduced to two. Therefor,
the dispersion relation Equation 16 gives two pairs of com-
plex conjugate values of wave number κ for corresponding
frequency ratio η (η = λ2). The dispersion characteristics
depending on real and imaginary part of κ can be determined
as propagation band, stop band, Bragg scattering or local res-
onance [18]. The imaginary value of wave number defines
the level of attenuation.

2.4 Frequency domain response of Finite RECM system
In case of unsymmetrical and multi coupled element, the

natural frequencies of the system may or may not occur in
stop band [33]. It is interesting to see the effect of the nat-
ural frequencies present in the finite system and specifically
within the stop band on the wave attenuation. For mono-
coupled system, it is evident that frequency response plot has
series of peaks in propagation band and a drop in the attenu-
ation band. (cite - mead-1, A ban Jap 2017).

For detailed study of behaviour of RECM element, the
cantilever beam is constructed using n RECM elements as
displayed in Figure 2. The global SEM (Kg) of this system
can be derived by assembling n SEM of RECM beam and ap-
plying cantilever boundary conditions to it. The receptance
matrix (α) of the system can be obtained by inverting global
SEM (Kg). The Frequency Response Function (FRF) for ith

degree of freedom (dof) due to force at jth dof can be ob-
tained from αi j component of the receptance matrix [34].

αi j =
Ui

Fj
(17)

The natural frequencies of the system can be obtained by
equating determinant of global SEM equal to zero (|Kg|= 0).

2.5 Visualisation of wave propagation in space and time
To visualise the elastic wave propagation and compre-

hend the attenuation characteristics through any medium, the
time domain response due to an excitation pulse need to be
evaluated. Wave burst of having frequencies of interest can
be generated to excite the system at one end for observing
its propagation through the elastic medium. Then the gen-
erated excitation wave can be converted into frequency do-
main by Fourier transform. The spectral elements of elas-
tic beam Se(ω) and RECM beam K(ω) is derived in above

Identify Representative unit cell
of RECM.

Formulate Spectral element Matrix for
elastic beam S(ω).

Apply equilibrium and continuity equa-
tions for Rigid body.

Formulation of Spectral element matrix
for Unit cell of RECM K(ω)

Formulate Transfer
Matrix Ts(ω)

Global Forcing vec-
tor in time domain
fa(t)

Apply Bound-
ary Condition to
assembled Ka(ω)

Obtain eigen solu-
tions of Ts(ω).

Derive Dispersion
relation

Frequency response
function K−1

a (ω)

Global forcing vec-
tor in frequency do-
main Fa(ω)

Response in frequency domain
Ua(ω) = K−1

a (ω)Fa(ω)

Response in time domain ua(t)

Wave dispersion study Space-time displacement analysis

FFT

IFFT

1Fig. 3: Procedure for obtaining band characteristics and re-
sponse in space-time domain for RECM beam

section. The global spectral element for the complete sys-
tem (Ka(ω)) can be obtained by assembly method similar to
FEM (Finite Element Method). The excitation wave in fre-
quency domain is used as the global force vector (Fa(ω)) to
obtain the response vector (Ua(ω)) in frequency domain as
given in Equation 18.

Fa(ω) = Ka(ω)Ua(ω)→Ua(ω) = K−1
a (ω)Fa(ω) (18)

By applying Inverse Fast Fourier transform (IFFT) to re-
sponse vector (Ua(ω)), the response vector in time do-
main (ua(t)) can be computed [25]. The overall process
for obtaining band characteristic of series of RECM ele-
ments and visualization of wave propagation is elucidated
in flowchart(Figure 3).

3 Validation
The different representative unit cells of the infinite

beam would have same band structure formation but dif-
ferent spectral element matrix. In this section; spectral el-
ement matrix is formulated for another unit representative
cell shown in Figure 4(a) to evaluate its natural frequencies
for simply supported boundary conditions. The obtained so-
lution is validated with the solution produced in paper [28].
Elastic beam connected by node 1-2 is beam 1 and another
connected by node 4-5 is beam 2. The spectral element for
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Fig. 4: (a) The representative unit cell of RECM beam for
validation purpose and (b) Free body diagram of unit cell of
RECM beam

them is uncoupled as per given in Equation 19.

F1

F2

=

S1 O

O S2

U1

U2

 (19)

Node 2 and 4 is connected by a rigid body so their relation
with node 3 can be obtained by continuity and force equilib-
rium equations obtained from rigid body dynamics given in
Figure 4(b).

Compatibility condition in matrix form:


y2

θ2

y4

θ4

=


1 − l2

2

0 1

1 l2
2

0 1


︸ ︷︷ ︸

T

 y3

θ3

 (20)

Force equilibrium in matrix form:

 V3

M3

= T ′


V2

M2

V4

M4

−ω
2
nλ

4

 y3

θ3

 (21)

The relation between the states of nodes 1,2,3,4 and 5 ob-
tained in equations 22, 20 and 21 can be manipulated to ob-
tain the spectral element Equation 22 of complete represen-
tative unit cell illustrated in Figure 4(a). The nondimentional
parameters length ratio ξ= l2/l1, mass ratio µ=M/ρAl1 and
rotary inertia ratio Ψ = J/Ml2

2 has been substituted the spec-
tral element matrix K6×6.

[
V1 M1 V3 M3 V5 M5

]′
=

K6×6

[
y1 θ1 y3 θ3 y5 θ5

]′
(22)

Table 1: Natural frequency ωn for combined elastic rigid
beam with properties - l1 = 0.8L, l2 = 0.2L, l3 = 0.3L, ψ= 0,
µ = 0.5 and ξ = 0.5

Mode
Natural frequency

Error (%)
SEM Ref [28]

1 10.758 10.758 0

2 43.389 43.389 0

3 100.92 100.92 0

To validate the proposed algorithm, simply supported bound-
ary condition are applied in Equation 22. The natural fre-
quencies obtained from proposed spectral element matrix
and calculated in reference [28] are found to be of exact
match. The first three modal frequencies of one example
problem from the paper [28] are matched with modal fre-
quencies obtained from the present approach is given in Ta-
ble 1. As both the methods are exact method, the zero error
in calculation depicts perfect implementation of spectral el-
ement method. Dispersion relationship is found to be same
for both the representative unit cell which validates the spec-
tral element formulation of first unit cell (Figure 1(b)).

4 Results and Discussion
4.1 Study of the dispersion characteristics and natural

frequencies
The dispersion relationship is invariant to the change in

dimensional parameters, i.e., density, flexural rigidity, length
and area of elastic body. Sensitivity analysis of the disper-
sion characteristics for an infinite number of RECM elements
and the natural frequencies and frequency response of the
finite (ten) number of RECM elements to the modification
in nondimentional parameters, viz., length ratio (ξ), mass
ratio (µ) and rotary inertia ratio (ψ) has been performed.
The wave attenuates spatially while the minimum value of
the attenuation constants min(|ℑ(κ|) is non-zero [11]. In
this study, the contour plot of minimum attenuation constant
(min(|ℑ(κ)|)), termed as attenuation profile, is plotted for
the range of natural frequency ratio (0 < η ≤ 50). Among
the three non-dimensional parameters, viz., length ratio (ξ),
mass ratio (µ) and rotary inertia ratio (ψ), two parameters
are kept constant and the remaining one varied in each atten-
uation profile plot to comprehend its influence. To provide
an insight about the dispersion diagram (concise band struc-
ture) and frequency response function for ten units, a typical
configuration has been chosen.

4.1.1 Variation of length ratio with zero rotary inertia
The Figure 5(a) presents the attenuation profile for vary-

ing length ratio ξ, having mass ratio µ = 0.25 and rotary in-
ertia ψ = 0. In Figure 5(b), the concise band structure for
ξ = 1 is plotted. The symmetric nature of the profile of
stop bands, as illustrated in Figure 5(b), explains the exis-



Fig. 5: (a)Attenuation-profile for varying length ratio ξ hav-
ing rotary inertia ratio ψ = 0 and mass ratio µ = 0.25. For
the system parameters corresponds to ψ = 0, µ = 0.25 and
ξ = 1 - (b) concise dispersion diagram illustrating the at-
tenuation and propagation bands and (c) plot of the cross
frequency response function evidenced the reduction of re-
sponse in the attenuation band. The normalised band width
of first and second band is 92.56% and 67.56% respectively.
(d) Plot of logarithmic determinant of global Spectral ele-
ment Matrix, where downward peak corresponds to the nat-
ural frequency of the system. The thin blue lines connecting
resonance peaks in (c) and downward peak in (d) illustrate
occurrence of resonance peaks in the stop band. The verti-
cal black center line indicates the mid frequency ratio (12.5)
for the wave burst for visualization of displacement in space
time.

tence of Bragg scattering [11]. The range of frequency ratio
of first and second Bragg band are respectively 2.96− 8.06
(BWI 92.56%)and 16.46−33.25 (BWI 67.56%). The drops
in the cross frequency response function (FRF) Figure 5(c)
matches pretty well with the stop bands. The resonance at
the natural frequencies of the finite structure yields the series
of peaks in pass band. Surprisingly, four peaks at frequency
ratios 6.29, 6.43, 29.82 and 29.86 can be noticed in the cross
FRF depicted in Figure 5(c). Also at this frequencies the at-
tenuation level reduces in case of finite structure, however
this information can not be obtained from the dispersion di-
agram of the infinite structure. Figure 5(d) is the plot of log-
arithmic determinant of global SEM (Kg) and the downward
peaks in the plot depicts the natural frequencies of the sys-
tem because at natural frequency the determinant of spectral
element matrix will be zero so its log will be −∞. Thin blue
lines in Figure 5 connects resonance peaks in stop band with

natural frequencies.

4.1.2 Variation of length ratio with non-zero rotary in-
ertia

To investigate the effect of rotary inertia, attenuation
profile for varying length ratio ξ having rotary inertia ratio
ψ = 5 and mass ratio µ = 0.25 is illustrated in Figure 6(a).
Here, the merging of bands is visible at a particular length ra-
tio ξ. The band structure and associated frequency response
function at specific length ratio where merging occurs are
elucidates Figure 6(b) and Figure 6(c). Sudden presence of
LR band is noticed which abridged the two Bragg bands in
Figure 6(b). The high attenuating response in LR band with
anti-resonance peaks is clear in cross FRF Figure 6(c). The
first band gap due to the merging phenomenon is obtained
in range of frequency ratio 2.62-26.54 (BWI = 164%). At
the merging point the attenuation level is very low due to the
appearance of natural frequency. Natural frequencies of this
system can be found out in Figure 6(d) which are exactly
positioned at corresponding resonance peak in stop band but
the anti-resonance (downward peaks in Figure 6(c)) has no
direct relation with the natural frequencies of the system.

4.1.3 Variation of mass ratio with non-zero rotary iner-
tia

The influence of mass ratio µ of RECM having length ra-
tio ξ = 0.5 and rotary inertia ratio ψ = 5, on attenuation pro-
file is illustrated in Figure 7(a). The band merging of first and
second band can be observed at µ = 0.32. The band struc-
ture and cross FRF for rotary inertia ratio ψ = 5, mass ratio
µ = 0.32 and length ratio ξ = 0.5 is illustrated in Figure 7(b)
and Figure 7(c). The merged band gap range is found to be
of frequency ratio 2.62-26.02 (BWI = 163.41 %). The cross
FRF verifies the band structure characteristics by showing
continuous response reduction in Bragg band and vibrating
attenuation in LR band. The first stop band has peak response
at frequency ratio 6.47 and 6.68 and at these same frequency
ratios the downward peaks showing natural frequencies can
be observed in Figure 7(d). .

4.1.4 Variation of rotary inertia ratio
The attenuation profile depicting the effect of relative

polar moment of inertia of rigid body on dispersion relation-
ship of RECM having mass ratio µ = 0.25 and length ratio
ξ = 0.5, is illustrated in Figure 8(a). At rotary inertia ratio
ψ = 1.71, the merging of second and third band can be no-
ticed. In Figure 8(b), the band structure of infinite RECM
having rotary inertia ratio ψ = 1.71, mass ratio µ = 0.25 and
length ratio ξ = 0.5 is represented to show the merging of
two Bragg bands with LR band distinctly. The Figure 8(c)
delineates the cross FRF to verify the obtained band struc-
ture. The range of merged attenuation band is of frequency
ratio 13.69-72.06 (BWI=136.14 %). The natural frequen-
cies observed in Figure 8(d) correlate exactly with resonance
peaks in FRF.



Fig. 6: (a)Attenuation-profile for varying length ratio ξ hav-
ing rotary inertia ratio ψ = 5 and mass ratio µ = 0.25. For
the system parameters corresponds to ψ = 5, µ = 0.25 and
ξ = 0.56 - (b) concise dispersion diagram illustrating the at-
tenuation and propagation bands and (c) plot of the cross
frequency response function evidenced the reduction of re-
sponse in the attenuation band. The normalised band width
of first merged band is 164.06% (d) Plot of logarithmic deter-
minant of global Spectral element Matrix, where downward
peak corresponds to the natural frequency of the system. The
thin blue lines connecting resonance peaks in (c) and down-
ward peak in (d) illustrate occurrence of resonance peaks in
the stop band. The vertical black center line indicates the mid
frequency ratio (12.5) for the wave burst for visualization of
displacement in space time.

4.1.5 Concluding remarks
The Peak responses presents in the attenuation band are

the result of existence of natural frequencies within the stop
band. In finite structure the attenuation level at these reso-
nance peaks are much lower then neighbouring frequencies
which is not possible to notice from the dispersion diagram
of infinite structure. This elucidates the importance of identi-
fication of natural frequencies while estimating the vibration
attenuation performance of the finite structure from the dis-
persion diagram of infinite structure. By increasing the num-
ber of unit RECM cells the attenuation level can be reduced
but complete elimination of peak is not possible [35, 36].

4.2 Visualization of wave propagation
The visualisation of flexural wave propagation and at-

tenuation through the RECM beam is only possible in time
domain. The Euler Bernoulli beams are dispersive in nature,
and the dispersion is proportional to the square root of exci-

Fig. 7: (a)Attenuation-profile for varying mass ratio µ hav-
ing rotary inertia ratio ψ = 5 and length ratio ξ = 0.5. For
the system parameters corresponds to ψ = 5, µ = 0.32 and
ξ = 0.5 - (b) concise dispersion diagram illustrating the at-
tenuation and propagation bands and (c) plot of the cross
frequency response function evidenced the reduction of re-
sponse in the attenuation band. The normalised band width
of first merged band is 163.41% (d) Plot of logarithmic deter-
minant of global Spectral element Matrix, where downward
peak corresponds to the natural frequency of the system. The
thin blue lines connecting resonance peaks in (c) and down-
ward peak in (d) illustrate occurrence of resonance peaks in
the stop band.

tation frequency [37]. The flexural wave of any frequency is
able to propagate through an Euler-Bernoulli beam; however,
waves containing specific band of frequencies attenuates in
case of RECM as discussed in the previous section. To elu-
cidate the wave propagation, here, the following connections
between two elastic beams are studied:

1. A uniform Euler-Bernoulli beam having identical prop-
erties.

2. Eight elements of RECM with zero rotary inertia (ψ =
0), length ratio (ξ = 0.56) and mass ratio (µ = 0.25)

3. Eight elements of RECM with non-zero rotary inertia
(ψ = 5), length ratio (ξ = 0.56) and mass ratio (µ =
0.25).

The input displacement controlled wave burst [38] of a par-
ticular mid frequency 12.5 Hz and frequency range from 0 to
25, is selected and applied at one end of beam to get the bet-
ter insight to the physics of wave attenuation because of con-
necting RECM elements. the time domain results are pro-
duced for a input flexural wave pulse as depicted in Figure 9.



Fig. 8: (a)Attenuation-profile for varying rotary inertia ra-
tio ψ having mass ratio µ = 5 and length ratio ξ = 0.5. For
the system parameters corresponds to ψ = 1.71, µ = 0.25
and ξ = 0.5 - (b) concise dispersion diagram illustrating the
attenuation and propagation bands and (c) plot of the cross
frequency response function evidenced the reduction of re-
sponse in the attenuation band. The normalised band width
of second merged band is 136.14% (d) Plot of logarithmic
determinant of global Spectral element Matrix, where down-
ward peak corresponds to the natural frequency of the sys-
tem. The thin blue lines connecting resonance peaks in (c)
and downward peak in (d) illustrate occurrence of resonance
peaks in the stop band.

(a) (b)

Fig. 9: (a)Input excitation wave burst in time domain
(b)Input excitation wave burst in frequency domain

4.2.1 A uniform Euler-Bernoulli beam having identical
properties

The wave propagation in space and time domain in case
of beams connected with same elastic part can be observed
in Figure 10. From Figure 10(a), it can be seen that the in-
put flexural wave is propagating and it is getting dispersed
very slowly in time and space. The Figure 10(b) and Fig-
ure 10(c) illustrates the nature of wave before and after the
connecting element. It can be concluded that flexural waves
propagates uninterruptedly through the uniform connecting
beam; henceforth, it is not useful for the attenuation of wave.

(c)

(a)

(b)

Fig. 10: (a)Wave propagation in space and time (b)snap shot
of beam before the wave reaches connecting element (c) snap
shot of beam after the wave propagates through connecting
element; the red band shows the elastic(same material as of
beam) connecting two elastic beams

4.2.2 RECM with zero rotary inertia
Now the connecting elastic part is replaced by eight ele-

ments of RECM with zero rotary inertia (ψ = 0), length ratio
(ξ = 0.56) and mass ratio (µ = 0.25). From Figure 5 (b), it
can be noticed that the complete excitation frequency band is
not falling completely in the band gap, only the end portions
of input excitation frequency range is in the stop band. So
the large portion of wave should propagate uninterruptedly.
From Figure 11, this phenomenon can be observed. part Fig-
ure 11(a) shows the excitation wave and the part (b) shows



propagation of the same wave and also the reflection of other
frequencies which might be in the stop band.

(c)

(a)

(b)

Fig. 11: (a)Wave propagation in space and time (b) snap shot
of beam before and (c) after the wave propagates through
connecting element; the red band shows the RECM elements
with zero rotary inertia- connecting two elastic beams

4.2.3 RECM with non-zero rotary inertia
After introducing the rotary inertia (psi = 5) the wide

band gap is achieved by observing the merge of two bragg
bands with the LR band as per illustrated in Figure 6. Now,
the connecting meta beam is replaced with eight elements
RECM with rotary inertia (ψ = 5), length ratio (ξ = 0.56)
and mass ratio (µ = 0.25) and the Figure 11 illustrates com-
plete reflection and zero propagation of incoming wave as
the complete frequency range falls under band gap.

5 Conclusion
Spectral element matrix for a rigid elastic combined

meta-beam (RECM) is formulated and further the transfer
matrix is derived for studying the flexural wave propagation
through it. The first three natural frequencies of the unit cell
of a RECM obtained from the developed algorithm is vali-
dated with the existing state-of the art. Due to the periodic
interference of the rigid body, Bragg-bands are observed in
the dispersion diagram while the rotary inertia is considered

(c)

(a)

(b)

Fig. 12: (a)Wave propagation in space and time (b)snap shot
of beam before the wave reaches connecting element (c) snap
shot of beam after the wave propagates through connect-
ing element; the red band shows the RECM elements with
nonzero rotary inertia- connecting two elastic beams

to be zero. The salient feature of this proposed RECM is the
emerging LR band in case of nonzero rotary inertia. For few
specific cases, this LR band assists to merge both the Bragg
band and turns into an ultra-wide stop-band with significant
level of attenuation; otherwise also it can widen the attenua-
tion band gap. The sensitivity analysis helps us to predict the
parameters for obtaining the desired attenuation profile. The
spectral element formulation of rigid-elastic combined beam,
observation of LR band without using any resonators are the
key contributions of this paper. Specifically, 164% normal-
ized bandwidth can be obtained in RECM. Further, the fre-
quency response function and natural frequencies of the fi-
nite RECM is evaluated. It has been noticed that some natu-
ral frequencies lies within the attenuation band; henceforth,
reduces the level of attenuation at those frequencies. Im-
portantly, this information cannot be obtained from the dis-
persion plot of the infinite system. Additionally, to compre-
hend propagation, attenuation and reflection of the dispersive
flexural wave burst through an uniform Euler-Bernoulli (EB)
beam and finite number of rigid elastic combined meta-beam
(RECM) elements sandwiched between two Euler Bernoulli
beams are investigated. An in house program is developed
to convert the response from frequency domain to the space-
time domain employing spectral element matrix, assembly
method of finite element method and inverse Fourier trans-



form. Future investigation can be carried out to realize the
system in practice. Acknowledgement: Authors acknowl-
edge Inspire faculty grant, grant number: DST/INSPIRE
/04/2018/000052, for supporting the research.

A Animation videos of visualisation of wave propaga-
tion
Animation of wave propagation, attenuation and reflec-

tion for

Uniform beam:
”w 12dot5 Elastic space displacement bc.avi”
sandwiched RECM with zero rotary inertia:
”w 12dot5 psi0 RECM displacement bc.avi”
sandwiched RECM with non-zero rotary inertia:
”w 12dot5 psi5 RECM displacement bc.avi”
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