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Abstract4

This paper develops a novel low-frequency vibration isolation device based on rigid body5

dynamics called a Rigid Elastic Vibration Isolator (REVI). The REVI model is realized6

by coupling four elastic beams with two rigid bodies monolithically made using 3D print-7

ing. The system operates based on the vibration of the intermediate rigid bodies, which8

leads to the anti-resonance phenomenon at low frequencies. The dynamic analysis of the9

proposed REVI system has been meticulously investigated through analytical methods and10

real-world experimentation. The analytical method uses the Spectral element method to11

obtain the dynamic response, which is also validated by the experimental findings. Fur-12

thermore, the REVI transmittance sensitivity analysis was conducted by adjusting the rigid13

mass and system load and exploring methods for generating wide low-frequency bandgaps.14

The inclination angle of the REVI system is also varied, revealing the bandgap character-15

istics regarding negative transmittance level. The parametric study varying the geometric16

properties of the REVI system enhances our understanding of the bandgap and attenuation17

characteristics within the attenuation band. The REVI mechanism is practical and eas-18

ily implemented, allowing for accurate and repeatable modeling. Moreover, the analytical19

observations assist in refining the shape of the REVI mechanism to achieve the necessary20

bandgap for the desired transmittance.21

Keywords: Vibration isolation, Anti-resonance, Spectral element method, Transmittance,22

Band-gap23

1. Introduction24

The demand for vibration isolators is crucial in several real-life applications, such as25

automobiles [1, 2], helicopter rotors [3–5], machine foundations [6, 7], offshore structures26

[8, 9], high rise buildings [10, 11], space structures [12] etc. In general, vibration isolation27

can be easily achieved through passive vibration isolation devices [13] such as base isolation28

devices [14–17]. However, structures in most civil and mechanical engineering applications29

are subjected to lower-frequency vibrations [18–20]. This lower frequency vibration isolation30

can be achieved by designing resonators with lower natural frequency [21–24], i.e., having31
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heavier mass or lower stiffness. However, lower stiffness and heavier mass are difficult to32

achieve from a stability perspective. Therefore, researchers are inclined toward designing33

vibration isolators that can work well in lower frequency ranges without increasing their34

static mass [25–29].35

The occurrence of the anti-resonance in the lower frequency range gives rise to a low-36

frequency stop band, which can be identified from the transmittance plot [30–32] . Recently,37

researchers have tried to obtain antiresonances using several methods; such as hydraulic38

leverage [33, 34], levered spring-mass system [35], beams connected by a spring mass system39

[36–38], inertial amplifier mechanism [14, 39–41], effective negative stiffness [42–44], effective40

negative mass [45, 46], multi resonating base isolation [16, 38, 47, 48], etc. Besides theoretical41

studies, several experimental studies have been performed on fabricated isolators such as42

flexible platforms with rigid mass [49, 50], shape memory alloy spring elements [51], negative43

stiffness vibration isolator device [52, 53], compliant lever-type passive vibration isolators44

[54]etc.45

Fabricating a vibration isolating device with attached resonating units is always chal-46

lenging. Few researchers have fabricated the inertial amplifier [55] and negative stiffness47

devices [56] for low-frequency vibration isolation. The fabrication of pinned connections and48

rigid mass-less bars are the two prime intricacies associated with the manufacturing process49

of inertial amplifier devices. Often, slender beams are used at the junction and the thick50

section at the middle part to replicate the inertial amplifier [57]. However, the stress con-51

centration in slender beams is very high in these devices. Additionally, jointed parts may52

get dislocated due to high amplitude vibration in a resonating device that connects springs53

and masses. [58, 59].54

Due to the intricate forms of many vibration isolation mechanisms, 3D printing is now55

widely used in manufacturing [60–62] due to repeatability and dimensional precision [55, 63,56

64]. The monolithic model creation using 3D printing technology has reduced the number of57

joints in a structure and the geometrical uncertainties of physical modeling. In this paper,58

the rigid elastic vibration isolator (REVI) model has been developed using 3D printing59

technology. The proposed REVI could be confused with a negative stiffness [46, 65] or an60

inertial amplifier model due to geometric resemblance; however, the working mechanism of61

REVI and its intrinsic properties are very different. For the analytical study of this REVI62

model, its dynamic stiffness matrix has been developed using spectral element matrix and63

rigid body dynamics [66–68]. The natural frequency of the developed REVI model has been64

obtained by experimental investigation, which has been used to compute the rotational65

stiffness of the beam joint. Further incorporating the rotational stiffness, the modified66

dynamic stiffness matrix has been obtained. The transmittance of REVI has been found67

experimentally, validating the analytical model developed. The primary novelty of the paper68

lies in fabricating a monolithic vibration isolator that uses the concept of rigid body dynamics69

and anti-resonance for broadband vibration isolation. Finally, a parametric study by varying70

nodal masses has been performed to gain insight into the physics behind antiresonance71

occurrence in transmittance. Additionally, a detailed study of change in transmittance level72

due to variation in geometric design has been carried out, which illustrated that the proper73

geometric design of REVI can create a double antiresonance peak in transmittance level,74
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which results in a wider bandgap with required vibration transmittance.75

This manuscript is organized as follows. Following this introduction, in section 2, a de-76

tailed procedure is provided for fabricating the REVI system and an analytical algorithm77

to formulate the dynamic stiffness matrix using the spectral element method. section 3 pro-78

vides a detailed procedure to estimate the rotational stiffness of the semi-rigid joint of the79

REVI system experimentally. section 4 describes the complete analytical and experimental80

procedure for obtaining the transmittance. A comparison study of the transmittance param-81

eters obtained from both analytical and experimental is shown in section 5. Additionally, a82

few parametric studies were conducted to evaluate the band-gap characteristics for different83

geometric parameters of the REVI system, such as mass ratio, inclination angle, etc. Finally,84

the conclusion from the findings is summarized in section 6.85

2. Theoretical analysis and design of REVI86

This section provides a detailed procedure to fabricate the REVI model and a complete87

analytical algorithm to formulate the dynamic stiffness matrix using the spectral element88

method.89

Table 1: Material and Geometrical properties

Apparatus Property Symbols Units Values

PLA material
Density ρ kg/m3 778.89

Young’s modulus E GPa 2.9

Elastic beam

Length l m 0.0453
Width b m 0.01

Thickness d m 0.001
Cross-sectional area A = bd m2 10−5

Second moment of area I = bd3/12 m4 8.33x10−13

Rigid mass

Length l m 0.01
Width b m 0.01

Thickness d m 0.01
Mass mr = bdlρ kg 7.889x10−4

Polar moment of inertia Jr = mrd
2/6 kg/m2 1.298x10−8

Force transducer
Sensitivity − mV/kN 2248

Mass Mf kg 0.02697

Two accelerometers
Sensitivity − mV/(m/s2) 4.98

Mass Ma kg 0.0236

2.1. REVI model fabrication90

The CAD model of the proposed REVI is made in AutoCAD software, which is then91

converted to a .gcode file using Ultimaker Cura software (Figure 1 (a)). The .gcode file92

is then printed in the 3D printing device (Ender) with the help of additive manufacturing93

technology (Figure 1 (b)). The monolithic 3D printed REVI model is demonstrated in94

Figure 1 (c). The material used for the REVI model is polylactic acid (PLA), whose density95
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was calculated by finding the sample’s ratio of mass and volume. The model and sensors’96

overall material and geometric properties have been described in Table 1.97
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Figure 1: (a) CAD model of the REVI ; (b) 3D printing device; (c) 3D printed proposed REVI; (d)
Analytically modeled REVI and (e) Degrees of freedom and boundary conditions at each node5



2.2. Analytical model development98

The REVI model is realized by coupling four elastic beams with two rigid bodies, as99

shown in Figure 1 (d). Exploiting the symmetry of this system, The analysis of only half100

part (shown in Figure 1 (e)) of the REVI has been carried out. Rigid body dynamics and101

spectral element techniques are used to obtain the global dynamic stiffness matrix [68].102

The elastic beams are slender and assumed to follow the Euler-Bernoulli beam theory. The103

beams are modeled as frame elements, with three degrees of freedom in each node: axial,104

transverse, and rotational. To obtain the dynamic properties of the entire system, the REVI105

is subjected to input base excitation at one end. The output dynamic response at the other106

end is obtained regarding displacement. The details on the mathematical formulation of the107

dynamic stiffness matrix are provided in the subsequent sections.108

2.2.1. Spectral element matrix in local coordinate system109

The governing differential equation of motion (GDEM) for ith beam element vibrating110

along the transverse direction can be expressed as follows,111

EI
∂4v (x, t)

∂x4
+ ρA

∂2v (x, t)

∂t2
= 0 (1)

and for axial direction, the GDEM can be defined as112

E
∂2u (x, t)

∂x2
− ρ

∂2u (x, t)

∂t2
= 0 (2)

Here, w and u represent the transverse and axial displacement of the ith beam, which113

depends on the spatial coordinate (x) and time (t). The parameters EI and ρA denote114

the beam’s flexural rigidity and mass per unit length. A harmonic solution for the gov-115

erning equation described above can be derived through the variable separable method for116

transverse direction, i.e.,117

v (x, t) = V (x) e−iωt (3)

and, for axial direction, i.e.,118

u (x, t) = U (x) e−iωt (4)

Here, V (x) and U(x) represent the amplitude of transverse and axial displacement of119

the ith beam as a function of the spatial coordinate alone, and ω is the frequency of the120

excitation. By substituting equation Eq. (3) and Eq. (4) into equation Eq. (1) and Eq. (2),121

the differential equations can be transformed into the spatial domain as follows:122
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EI
∂4V (x)

∂x4
− ω2ρAV (x) = 0 (5)

and,123

E
∂2U (x)

∂x2
+ ω2ρU (x) = 0 (6)

Under the assumption of a uniform section, where both EI and ρA remain constant124

along the entire length of the beam, the transverse solution to the given equation can be125

expressed using hyperbolic trigonometric functions.126

V (x) = A1 sin (λx) + A2 cos (λx) + A3 sinh (λx) + A2 cosh (λx) (7)

and similarly, the solutions for the axial directions can be obtained as127

U (x) = B1 sin (µx) +B2 cos (µx) (8)

where, A1 through A4, B1 and B2 represent unknown arbitrary constants. λ and µ128

represent the wave numbers for transverse and axial direction. By substituting equation129

Eq. (7) and Eq. (8) into equation Eq. (5) and Eq. (6), the wave numbers λ and µ can be130

expressed as a function of the excitation frequency ω as follows:131

EIλ4V (x)− ω2ρAV (x) = 0 ⇒ λ =
4

√
ω2ρA

EI
(9)

and132

−EAµ2U (x) + ω2ρAU (x) = 0 ⇒ µ =

√
ω2ρ

E
(10)

The state vectors at a single end of ith beam element, specifically rotation (ϕ), axial force133

(P ), bending moment (M), and shear force (V ), can be expressed in terms of the transverse134

displacement (w) and axial displacement (u) as135

ϕ (x, t) = V I (x) e−iωt, Fx (x, t) = EAU I (x) e−iωt,
M (x, t) = EIV II (x) e−iωt, Fy (x, t) = EIV III (x) e−iωt (11)

Substituting Eq. (7) and Eq. (8) in Eq. (11), the displacement state vectors for ith beam136

element shown in Figure 1 (e) can be defined as137

7



D = HΘ ⇒ Θ = H−1D (12)

where,138

Dj =
{

ui vi ϕi ui+1 vi+1 ϕi+1

}T
, Θ =

{
B1 A1 A2 B2 A3 A4

}T
and139

Hj =


0 0 0 1 0 0
0 0 1 0 0 1
0 λ 0 0 λ 0

sin (µl) 0 0 cos (µl) 0 0
0 sin (λl) cos (λl) 0 sinh (λl) cosh (λl)
0 λ cos (λl) −λ sin (λl) 0 λ cosh (λl) λ sinh (λl)

 (13)

Here, l is the length of the ith beam element. Similarly, the force state vectors for ith140

beam element shown in Figure 1 (e) can be defined as141

Fj = XjKjΘ (14)

where,
Fj =

{
Fxi Fyi Mi Fx(i+1) Fy(i+1) Mi+1

}T

=
{

Fxi (0) Fyi (0) Mi (0) Fx(i+1) (Lj) Fy(i+1) (Lj) Mi+1 (Lj)
}T . Here, Xi142

and Ki can be defined as143

Xj =


−EA 0 0 0 0 0
0 EI 0 0 0 0
0 0 −EI 0 0 0
0 0 0 EA 0 0
0 0 0 0 −EI 0
0 0 0 0 0 EI

 (15)

and,144

Kj =


µ 0 0 0 0 0
0 −λ3 0 0 λ3 0
0 0 −λ2 0 0 λ2

µ cos (µLj) 0 0 −µ sin (µLj) 0 0
0 −λ3 cos (λLj) λ3 sin (λLj) 0 λ3 cosh (λLj) λ3 sinh (λLj)
0 −λ2 sin (λLj) −λ2 cos (λLj) 0 λ2 sinh (λLj) λ2 cosh (λLj)

 (16)

Substituting Eq. (12) in Eq. (14), the force-displacement relationship between the two ends145

of of the ith beam element can be defined as146

Fj = XjKjΘ = XjKjHj
−1Dj = SjDj (17)
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Here, Sj is the dynamic stiffness matrix, also known as the Spectral element matrix of the147

ith beam element, which can be expressed as148

Si =



s11 0 0 s14 0 0

0 s22 s23 0 s25 s26

0 s32 s33 0 s35 s36

s41 0 0 s44 0 0

0 s52 s53 0 s55 s56

0 s62 s63 0 s65 s66


(18)

where,149

s11 = s44 =
EAµ cos (µ li)

sin (µ li)

s14 = s41 = − EAµ

sin (µ li)

s22 = s55 = −EI λ3 (cosh (λ li) sin (λ li) + cos (λ li) sinh (λ li))

cos (λ li) cosh (λ li)− 1

s23 = −s56 = −EI λ2 sin (λ li) sinh (λ li)

cos (λ li) cosh (λ li)− 1

s25 =
EI λ3 (sinh (λ li) + sin (λ li))

cos (λ li) cosh (λ li)− 1

s26 = −s35 =
EI λ2 (cos (λ li)− cosh (λ li))

cos (λ li) cosh (λ li)− 1

s33 = s66 =
EI λ (cos (λ li) sinh (λ li)− cosh (λ li) sin (λ li))

cos (λ li) cosh (λ li)− 1

s36 =
EI λ (sin (λ li)− sinh (λ li))

cos (λ li) cosh (λ li)− 1

The displacement continuity equations and force equilibrium equations are used to derive150

the relation between primary node 3 (center of the rigid body) and secondary node 3si151

(beam’s node connected to the rigid body). For beam i, Xi and Yi are distances between152

master node 3 and slave node 3si in global coordinates. Beam’s local axis system makes an153

angle θi with the global axis. The distances xi and yi in the local coordinate system are154

derived as155

[
xi

yi

]
=

[
cos (θi) − sin (θi)

sin (θi) cos (θi)

] [
Xi

Yi

]
(19)
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The dynamic stiffness matrix of ith beam incorporating the second node at the center of156

gravity of a rigid body can be defined as157

Ri = Trd S
i TT

rd (20)

where,158

Trd =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 yi

0 0 0 0 1 −xi

0 0 0 0 0 1


(21)

2.2.2. Spectral element matrix in global coordinate system159

Further, the dynamic stiffness matrix in the local coordinate system Ri is transformed160

into a global coordinate system by coordinate transformation matrix T as161

Ki = TRiTT (22)

where,162

T =



cos (θi) sin (θi) 0 0 0 0

− sin (θi) cos (θi) 0 0 0 0

0 0 1 0 0 0

0 0 0 cos (θi) sin (θi) 0

0 0 0 − sin (θi) cos (θi) 0

0 0 0 0 0 1


(23)

The force-displacement relation for beam 1 can be written as163 {
F1

F3

}
=

[
K1

11 K1
13

K1
31 K1

33

] {
U1

U3

}
(24)

Similarly, the force-displacement relation for beam 2 can be written as164 {
F2

F3

}
=

[
K2

22 K2
23

K2
32 K2

33

] {
U2

U3

}
(25)

where, Uj is displacement vector and Fj is force vector of jth node as165

Uj =


uj

vj

ϕj

 Fj =


Fx j

Fy j

Mj

 (26)
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2.2.3. Assembly166

Due to inertial mass in the axial and transverse direction, the inertial force matrix and167

polar moment of inertia in the rotational degree of freedom must be added at corresponding168

nodes. Let mj and Jj be the mass and polar moment of inertia at jth node. The inertial169

force matrix is written as170

Ij = −ω2


mj 0 0

0 mj 0

0 0 Jj


︸ ︷︷ ︸

Ij

Uj (27)

The final assembled dynamic stiffness matrix of the system in global coordinates can be171

written as172 
F1

F2

F3

 =


K1

11 − I1 0 K1
13

0 K2
22 − I2 K2

23

K1
31 K2

32 K1
33 +K2

33 − I3


︸ ︷︷ ︸

K̄


U1

U2

U3

 (28)

2.2.4. Boundary condition173

The analytical model exploits the symmetricity of the system, which restrains the degree174

of freedom in the v direction for node 1 and 2, i.e., v1 = v2 = 0. Node 1 will be fixed with175

the base plate, which can move only in the u direction, so the rotational degree of freedom176

at node 1 will be restrained, so ϕ1 = 0. However, at node 2, the rotational degree of freedom177

is not fully restrained. Therefore, the rotational spring of stiffness kr is modeled at the node178

2. Therefore, the rotational spring with stiffness kr has been modeled at node 2. Therefore,179

the rotational spring stiffness kr will be added in the global dynamic stiffness matrix (K̄) at180

the stiffness coefficient corresponding to moment and rotation at node 2 as181

K̄(6, 6) = K̄(6, 6) + kr (29)

The boundary conditions of this system are defined as182

v1 = ϕ1 = 0

v2 = 0

M2 = kr ϕ2 (30)

After applying the boundary conditions, the reduced force-displacement equation can be183

written as184
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

Fx1

Fx2

M2

Fx3

Fy3

M3


= K̄bc



u1

u2

ϕ2

u3

v3

ϕ3


(31)

where, the reduced stiffness matrix (K̄bc) has been derived in Appendix A.185

3. Estimation of rotational stiffness kr186

While the rotational degree of freedom is fully restrained, the rotational stiffness kr is187

infinite; however, the rotational stiffness value zero indicates free rotation. As node 2 is a188

semi-rigid joint, the value of its rotational stiffness kr will be between 0 to ∞, which needs189

to be obtained experimentally. In this paper, the experiment has been carried out to find190

the system’s natural frequency and equate it with the analytical natural frequency of the191

same mode to determine the rotational stiffness kr of the joint.192

3.1. Experimental setup for determining natural frequency193

The natural frequency of the REVI can be estimated by fixing it to a fixed base situated194

at a certain height, and an accelerometer was attached at the bottom of the sample. Small195

displacement was provided at the bottom in a vertical direction, allowing the model to196

vibrate freely (Figure 2 (a)). The vertical acceleration vs. time was recorded as shown197

in Figure 2 (b), which is then converted to the frequency domain using the Fast Fourier198

Transform (FFT) algorithm (Figure 2 (c)). The FFT graph’s maximum amplitude is the199

REVI’s natural frequency, i.e., 92 Hz (ωn = 578.05 rad/s).200

3.2. Determining natural frequency analytically201

Nodal masses and boundary conditions are similar to the experimental setup and have202

been applied in the Eq. (31) to determine the natural frequency. One side of the designed203

REVI has been fixed at the top, and the other is free to move. Therefore, The inertia204

matrix (I1) at node 1 is zero as no additional mass is attached. Further, the attached205

accelerometer at the bottom is modeled as a point mass at node 2. m2 = ma/2 (m2 is half206

of the accelerometer mass due to symmetric condition), and J2 = 0 has been used in the207

inertia matrix I2. The inertia matrix at node 3 will have mass (m3 = mr) and polar moment208

of inertia (J3 = Jr) as calculated for a rigid body in Table 1.209

The node 1 is fixed at the top, restraining the displacement in the u direction, thus210

incorporating the boundary condition u1 = 0 in Eq. (31). Further, by static condensation211
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the reduced matrix K̄bc1(ω, kr) has been obtained Appendix B. The determinant of the212

dynamic stiffness matrix will be zero at its natural frequency.213

|K̄bc1(ωn, kr)| = 0 (32)

The analytical natural frequency for free rotation (kr = 0) and restrained rotation (kr = ∞)214

has been obtained as 73.21 Hz and 100.27 Hz, respectively. It validates that the experimental215

natural frequency lies within the natural frequency obtained analytically, 73.21 to 100.27 Hz.216

Therefore, applying this concept, the rotational spring stiffness kr is obtained in Figure 3217

by varying kr. The |K̄bc(ωn, kr)| is found zero at rotational stiffness kr = 0.3591 Nm/rad.218

92 Hz

(a) (b)

(c)

Figure 2: (a) Free vibration of REVI model for estimation of natural frequency; (b) Time acceleration plot
of the free vibration analysis; (c) Frequency domain plots with the help of FFT algorithm (sensitivity of
accelerometer = 4.98 mV/ms−2)
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|K̅
b
c(

n
,k
r
)|

kr

Figure 3: Plot of determinant of dynamic stiffness matrix for natural frequency ωn = 578.05 rad/s with
rotational spring stiffness kr. The zero determinant is shown by a circle marker at the rotational stiffness
kr = 0.3591 Nm/rad.

3.3. Natural Modal shapes219

The REVI model has been simulated in COMSOL software, incorporating geometric and220

material properties outlined in Table 1 and utilizing the rotational stiffness (kr) determined221

in Figure 3. The model considered in the COMSOL software is the same as in the analytical222

model due to its symmetricity, as shown in Figure 1 (d). The results include the natural223

frequencies and their corresponding modal shapes, as illustrated in Figure 4 (a-c). Addition-224

ally, analytically obtained natural frequencies are presented in Figure 4 (d) through a plot of225

log10(|(Kbc)|) against frequency. This representation effectively highlights the occurrence of226

spikes at natural frequencies, where the determinant of the spectral element matrix becomes227

zero. The negligible difference between analytically derived and COMSOL-generated natu-228

ral frequencies serves as a validation of the model. The modal shapes depicted in Figure 4229

(a-c) provide insights into the vibration mechanism of the model..230
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Figure 4: (a) First, (b) Second and (c) Third modal shapes of REVI and (d) Logarithm of the determinant
of spectral element matrix (Kbc) of REVI.

4. Estimation of vibration isolation performance231

The vibration isolation performance is estimated from the vibration transmittance from232

the base to the system. The transmittance in the u direction between node 1 and 2 has been233

obtained analytically and experimentally for validation.234

4.1. Experimental procedure for transmittance computation235

This section shows the detailed experimental procedure to compute the transmittance.236

Thus, this section is further subdivided into two parts, i.e., experimental setup, which shows237
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the complete procedure of setting up the REVI to the dynamic shaker, and post-processing,238

which elucidates the detailed procedure of obtaining the transmittance.239

4.1.1. Experimental setup240

As shown in Figure 5 (b), the experimental setup consists of a PLA rigid beam whose241

one end is fixed with the base plate of the dynamic shaker, and the other is attached to the242

REVI model. A force transducer of sensitivity 2248 mV/kN is connected between the rigid243

beam and the REVI model (Figure 5 (b)) to record the amount of reaction force generated244

due to the vibration of REVI. Two accelerometers (A1 and A2) having a sensitivity of 4.98245

mV/ms−2 have been placed at the top and bottom of the REVI to measure the transmittance246

as shown in Figure 5 (b). The accelerometers and force transducer are connected in the247

corresponding channels of the data acquisition system (DAQ) as shown in Figure 5 (c). The248

DAQ is then connected to the PC interface, which converts the continuous analog signals to249

discrete analog signals, which can be simulated through LabView software (Figure 5 (d)).250

With the aid of a power amplifier (Figure 5 (a)), desired frequency values and voltage gain251

are provided to the dynamic shaker, which converts electrical energy to mechanical energy252

and produces a harmonic excitation at the base plate of the shaker system. The whole setup253

is configured to vibrate vertically.254

4.1.2. Post processing of the measured raw data255

The dynamic shaker provides monochromatic harmonic sinusoidal base excitation to the256

REVI. The frequency range is varied from 20 Hz to 160 Hz. The LabView software obtains257

the time vs. amplitude graphs in millivolt (mV). The raw data for each frequency has258

been acquired after waiting a few seconds to allow the system to vibrate steadily. The time259

vs. force in Newton (N) and time vs. acceleration in m/s2 are obtained from the force260

transducers and accelerometers using the sensitivity values given in Table 1 as shown in261

Figure 5 (e) to Figure 5 (g). The frequency domain plots of the corresponding time domain262

plots can be obtained through the FFT algorithm as shown in Figure 5 (h) to Figure 5 (j).263

The ratio of frequency amplitude of the bottom accelerometer (A2) to the top accelerometer264

(A1), also known as transmittance (Tr) for the above frequency range, is compared with the265

corresponding analytical methods shown in Figure 6.266

4.2. Analytically obtaining transmittance267

In this setup, the force transducer is attached to node 1, the accelerometer is attached268

to node 2, and the rigid body of PLA is at node 3. The nodal masses and polar moment269

of inertia at node 1, 2 and 3 due to force transducer, accelerometer, and rigid body will be270

accounted as m1 = Mf/2 , J1 = 0, m2/2 = ma , J2 = 0 and m3 = mr , J3 = Jr (Table 1).271

Here, node 1 is fixed at the base plate of the beam connected to the shaker. The272

displacement of node 1 will be the same as the rigid beam end due to the vibrating shake273

base plate. The rigid beam is vibrating only in u directional degree of freedom. As the system274

is assumed to be in the linear range, the base displacement boundary condition u1 = 1 can275

be assumed for all the frequencies. Applying base excitation boundary condition by static276
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Figure 5: (a) Power amplifier to vibrate the shaker system at desired gain and frequency; (b) REVI connected
to the dynamic shaker system; (c) DAQ device used to collect the response of accelerometers and force
transducers; (d) Simulation of data acquisition system using LabView software; (e) to (j) Time and frequency
domain response of force transducers and accelerometers at a frequency of 92 Hz.

17



condensation to Eq. (31), the reduced Force displacement equation can be determined as277

given in Appendix C.278

The transmittance of vibration in u direction of base (node 1) u1, to the accelerometer279

(node 2) u2 can be obtained by280

Tr = log10

(
u2

u1

)
(33)

T
ra
n
s
m
it
ta
n
c
e

fz

fr

fp

fc

T0

fs2

fs1

Figure 6: Transmittance of the proposed REVI system from experimental and analytical computation
compared to an equivalent spring-mass system. The REVI system’s bandwidth (shaded region) is 0.1767
for one-fourth amplitude transmittance.

5. Results and discussions281

The transmittance of REVI has been compared with the classical spring mass resonator282

of a similar natural frequency (92 Hz). In equivalent classical resonator; keeping the mass283

(Mc = M2), the equivalent spring stiffness (Kc) of classical resonator has been obtained as284

Kc = ω2
nMc (34)
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The transmittance of the classical resonator can be obtained as285

Tc = log10

(∣∣∣∣ Kc

Kc − ω2Mc

∣∣∣∣) = log10

(∣∣∣∣ 1

1− (ω2/ω2
r)

∣∣∣∣) (35)

The transmittance obtained for REVI using Eq. (33) and classical resonator using Eq. (35)286

is plotted in Figure 6 in solid and dashed lines, respectively. The transmittance peak occurs287

at resonance frequency (fr = 92.0487Hz). However, an anti-resonance dip is obtained in288

REVI at (fz = 114.145Hz). The transmittance of REVI is less than the classical resonator289

till (fp = 159.65Hz) as shown in Figure 6. Generally, any system’s allowable transmittance290

(T0) is given. Let the allowable transmittance be (T0 = log10 0.25). Therefore the black291

dashed line shown in Figure 6 shows logarithmic transmittance level, which cuts trans-292

mittance of REVI at (fs1 = 107.726Hz) and (fs2 = 128.52Hz) and classical resonator at293

(fc = 205.237Hz). The frequency ranges fs1 to fs2 demonstrates the stop band for the294

REVI system for maximum transmittance T0, which is much less than the possible stopping295

frequency we get from a classical resonator. The bandwidth of REVI can be calculated as296

[35]297

BW =
ωs2 − ωs1√
ωs1 ωs2

=
fs2 − fs1√
fs1 fs2

= 0.1767 (36)

5.1. Experimental validation298

A harmonic monochromatic sinusoidal base excitation of frequency range 20 Hz to 160299

Hz is provided to the REVI through the dynamic shaker. The acceleration time histories300

and their corresponding frequency domain plots can be obtained using the procedure defined301

in subsection 4.1. The ratio of peak frequency amplitude of the bottom accelerometer to the302

top accelerometer (log10(A2/A1)), also known as transmittance, has been plotted in Figure 6303

with blue circles. The transmittance calculated here is the ratio of acceleration in the u304

direction at nodes 2 and 1, which will be equal to velocity or displacement transmittance.305

Further, this experimental transmittance for the above frequency range is compared with306

the corresponding analytical displacement transmittance. From Figure 6, it is observed307

that the experimental transmittance values are successfully validated with the analytical308

transmittance of REVI, providing us essential confidence in our proposed methodology.309

5.2. Parametric Study310

The sensitivity of resonance and anti-resonance peaks in transmittance has been studied311

by varying the masses at nodes 2 and 3. The transmittance Tr has been plotted (Figure 7)312

for the following cases as313

• The mass m2 = 0 and mass m3 = 2p mr, where p varies from −1 to 3 as shown in314

Figure 7 (a). It has been observed that resonance and anti-resonance occur at the same315

frequency. This frequency shifts to a lower frequency as the rigid mass m3 increases.316

However, in this scenario, the width of the bandgap is too narrow.317
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• The mass m2 = 2q mr and mass m3 = mr, where q varies from 2 to 6 as shown in318

Figure 7 (b). It can be observed that by increasing mass at node 2, the resonating319

frequency of transmittance shifts to a lower frequency. However, the anti-resonance320

frequency does not change. So, it can be concluded that anti-resonance depends on321

the rigid mass of the REVI and not on the system’s resting mass. The higher the mass322

ratio α = m2

m3
, the wider will be the band gap. However, the mid-frequency fz depends323

on the rigid mass m2.324

• The mass m2 = 2q mr and mass m3 = 2p mr, where where p varies from −2 to 2 and325

q varies from 2 to 6 as shown in Figure 7(c). Here, the mass ratio α = 24 is constant.326

It can be seen that the resonance and anti-resonance both peaks shift towards a lower327

frequency range as the system’s total mass increases. Similarly, it can be observed328

that the bandgap also gets wider for higher system mass.329

p = -1p = 3

q = 2q = 6

p = -2

q = 2
p = 2

q = 6

(a) (b) (c)
θ = 6o

Figure 7: Variation of Transmittance (Tr) with the excitation frequency for different mass ratios. (a) The
mass m2 = 0 and mass m3 = 2p mr, where p varies from −1 to 3, (b) The mass m2 = 2q mr and mass
m3 = mr, where q varies from 2 to 6, (c) The mass m2 = 2q mr and mass m3 = 2p mr, where where p varies
from −2 to 2 and q varies from 2 to 6

5.2.1. Relative transmittance330

Anti-resonance frequency is the critical parameter for designing the base isolator, as it331

determines the mid-frequency of the band gap. The following plots have been obtained332

Figure 8 by keeping the mass m3 = mr constant and varying the mass m2 = 2q, where333

q increases from 0 to 2, for different transmittance, to obtain the rationale behind this334

anti-resonance phenomenon as follows.335

• First of all the transmittance Tr = log10(
u2

u1
) has been plotted in Figure 8 (a). As336

discussed earlier, this demonstrates the constant fz frequency with an increase in337

bandwidth as an increase in mass m2.338

• Further in Figure 8 (b), the transmittance of rigid mass m3 in Tr1 = log10(
u3

u1
) has339

been plotted. It can be noticed that the resonance frequencies are the same as that of340
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Tr, but the anti-resonance frequency is changed. The precise observation has noticed341

that all three cases’ transmittance plots have one common point, which appears at the342

anti-resonance frequency fz.343

• The observation of common point motivated to obtain the transmittance of node 3344

for node 2, to get the knowledge of the relative motion of masses m3 and m2. The345

Transmittance Tr2 = log10(
u3

u2
) and Transmittance Tr3 = log10(

v3
u2
) has been plotted in346

Figure 8 (c). In all three cases and both the transmittance Tr2 and Tr3, the resonance347

frequency is the same as that of anti-resonance frequency fz. So, it can be concluded348

that the anti-resonance of the system depends on the relative resonance of the base349

isolator concerning the load of the system resting on the isolator.350

q = 0q = 2

fz = 114.145

fz = 114.145

fz = 114.145

Tr2

Tr3

(a) (b) (c)
θ = 6o

Figure 8: Variation of transmittance (Tr) and relative transmittance’s (Tr1) and (Tr2) with the excitation
frequency for different mass ratios. The mass m1 = 2q ma and mass m2 = mr, where q increases from 0 to
2 (a) Transmittance Tr = log10(

u2

u1
), (b) Transmittance Tr1 = log10(

u3

u1
), (c) Transmittance Tr2 = log10(

u3

u2
)

and transmittance Tr3 = log10(
v3

u2
). The resonance in relative transmittance results in antiresonance in

transmittance (Tr).

5.2.2. Sensitivity to inclination angle351

Further, a parametric study has been conducted showing the variation of transmittance352

as a function of excitation frequency for different values of inclination angle (θ = 20o, 30o,353

33.42o, and 40o) as illustrated in Figure 9 (a). Figure 9 (b) shows a contour plot about354

the negative transmittance profile (represented by negative values of transmittance plot355

in Figure 9 (a)) as a function of excitation frequency and inclination angle for enhanced356

comprehension of the bandgap and level of attenuation within the attenuation band. From357

Figure 9 (b), it can be observed that double anti-resonance peaks can be obtained in the358

attenuation band for inclination angles up to 33.41o. The presence of two neighboring anti-359

resonances without an in-between resonance peak is noteworthy since this increases the360

bandwidth of the attenuation effect significantly [69]. For θ = 33.42o, the two attenuation361

peaks merge to form a single attenuation peak. Further, an increment of the angle creates362

the resonance cancellation phenomenon, completely vanishing the attenuation peaks and363

further reducing the band gap.364
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Figure 10: Attenuation profile (represented by negative values of transmittance plot) as a function of
excitation frequency and several geometric parameters such as (a) Length of the beam. (b) The thickness
of the beam. (c) The mass ratio (ratio of the rigid mass to the primary mass of the system).

5.2.3. Sensitivity of beam length, thickness, and nodal masses365

The variation of the anti-resonance frequency of other geometric parameters of the REVI366

system has been observed using the contour plots shown in Figure 10. Figure 10 (a) to367

(c) shows the variation of negative transmittance profile (represented by negative values368

of transmittance) as a function of excitation frequency and three predominant geometric369
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parameters such as length of the beams, the thickness of the beams and the nodal mass370

ratio. Figure 10 (a) depicts the emergence of double anti-resonance dips in the first band371

of REVI as we increase the length of the beam. Further, Figure 10 (b) showcases the linear372

change in the position of antiresonance dips as the change in beam thickness. Moreover,373

Figure 10 (c) demonstrates the double anti-resonance peaks in the first bandgap coming374

closer as the mass ratio increases. The main purpose of the contour plots is to decide the375

range of parameters that can be considered to achieve the desired anti-resonant frequencies.376

5.2.4. Transmittance metrics and Relative bandgap377

In continuation to subsubsection 5.2.3, to quantify the properties of the REVI band378

gap with double transmittance drops, three metrics are proposed as shown in Figure 11379

(a) following [45]. The metric µmin denotes the minimum level of attenuation achieved380

within the double anti-resonance drops within the frequency range Ωmin as illustrated in381

the figure. As for the metric Ωmax = f2 − f1, this represents the conventional band-gap382

width. In both frequency metrics, the bandwidth is normalized to its central frequency value,383

Ωmid = f1+f2
2

. Upon normalization, Ωmin and Ωmax are denoted Ω∗
min and Ω∗

max, respectively.384

The variation of metrics as a function of inclination angle is plotted in Figure 11 (b). The385

variation in transmittance level (blue curve) can be achieved for an inclination angle from386

4 to 33.41 degrees. At 33.42 degrees, the double transmittance drops merge into a single387

drop, thus vanishing the transmittance level. Additionally, for an inclination angle less than388

4 degrees, the range between the double peaks coincides with zero, thus again vanishing the389

transmittance level. Similarly, the red curve shows the maximum relative bandgap, which390

increases from 120 percent to 160 percent with an increase in inclination level. It is also391

observed that the minimum relative bandgap (black curve) decreases with the inclination392

angle, which shows a trade-off between different relative bandgaps.393
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Figure 11: (a) Illustration of three metrics for the quantification of the relative bandgap size, minimum
transmittance level, and relative band gap size corresponding to the minimum transmittance level; (b)
Variation of the band-gap and transmittance metrics to inclination angle.
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6. Conclusion394

The dynamic response analysis of a base-excited novel monolithic rigid elastic vibration395

isolator (REVI) system has been conducted using analytical and experimental methods.396

The REVI model has been fabricated using a 3D printer. An analytical formulation of the397

proposed model is done by applying the spectral element method and rigid body dynamics398

concept. The displacement transmittance between the fixed and free end of the REVI has399

been validated experimentally, and a stop band of bandwidth of 0.1767 has been obtained400

for a maximum allowable transmittance of 0.25. The designed REVI gives a stop band in a401

frequency range lower than the equivalent classical spring mass resonator. The antiresonance402

phenomenon in REVI facilitates this occurrence of a lower-frequency stop band.403

Moreover, parametric studies have been conducted by varying the masses to obtain the404

rationale behind the anti-resonance peak in transmittance. The higher the mass ratio α,405

widens the band gap, and the increase in the mass shifts the band towards the lower fre-406

quency range. The relative resonance of the rigid mass of REVI to the system’s mass gives407

the antiresonance in the system transmittance. Additionally, an increment in the inclination408

angle θ enables us to obtain two neighboring anti-resonance peaks, significantly increasing409

the attenuation effect. The variation of θ also provides an insight into the bandwidth char-410

acteristics (horizontal and vertical) from which an optimum angle can be decided depending411

on the design requirement.412

The primary novelty of the paper lies in fabricating a monolithic vibration isolator that413

uses the concept of rigid body dynamics and anti-resonance for broadband vibration isola-414

tion. The fabrication of the REVI is straightforward and without any manual connection.415

Therefore, this monolithic model has the benefits of repeatability and accuracy. Moreover,416

the analytical method is simple enough to apply in any modified version of the solved REVI417

system. Thus, the proposed REVI system can be a vibration isolator for the obtained stop418

band. In the future scope of this work, the proposed REVI type system can be applied in419

several real-life applications, such as automobiles and machine foundations where limited420

vibration transmittance is allowed.421
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Appendix A. Reduced dynamic stiffness matrix (K̄bc)433

The global force-displacement relation derived can be written as per Eq. (28) as434 

Fx1

Fy1

M1

Fx2

Fy2

M2

Fx3

Fy3

M3



=



K̄11 K̄12 · · · K̄19

K̄21 K̄22

...
. . .

...

K̄91 · · · K̄99


︸ ︷︷ ︸

K̄



u1

v1

ϕ1

u2

v2

ϕ2

u3

v3

ϕ3



(A.1)

Now, rearranging the global spectral element matrix (K̄bc1) by separating known degrees of435

freedom (from boundary conditions given in Eq. (30)) as436 

Fx1

Fx2

M2

Fx3

Fy3

M3

Fy1

M1

Fy2



=



K̄rr K̄rc

K̄cr K̄cc





u1

u2

ϕ2

u3

v3

ϕ3

v1

ϕ1

v2



(A.2)

Now, applying the static condensation to the Eq. (C.1), the condensed spectral element437

matrix (K̄bc) can be obtained as438

K̄bc = K̄rr (A.3)
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Appendix B. Reduced dynamic stiffness matrix (K̄bc1)439

Now, rearranging the global spectral element matrix K̄ by separating known degrees of440

freedom as per boundary conditions (u1 = v1 = ϕ1 = v2 = 0)441 

Fx2

M2

Fx3

Fy3

M3

Fx1

Fy1

M1

Fy2



=



K̄rr K̄rc

K̄cr K̄cc





u2

ϕ2

u3

v3

ϕ3

u1

v1

ϕ1

v2



(B.1)

Now, applying the static condensation to the Eq. (B.1), the condensed spectral element442

matrix (K̄bc1) can be obtained as443

K̄bc1 = K̄rr (B.2)

Appendix C. Reduced force displacement equation for transmittance study444

Applying the boundary conditions of zero displacements, the dynamic force-displacement445

equation can be written as per Eq. (31). Further, the obtained dynamic stiffness matrix446

Eq. (A.3) has been divided into four parts as per known and unknown degrees of freedom447

as follows448



Fx1

Fx2

M2

Fx3

Fy3

M3


=



K̄11 K̄1r

K̄r1 K̄rr





u1 = 1

u2

ϕ2

u3

v3

ϕ3


(C.1)

−→

[
Fx1

Fr

]
=

[
K̄11 K̄1r

K̄r1 K̄rr

][
1

ur

]
Finally, the reduced force-displacement equation can be written as449

Fr = K̄r1 + K̄rr ur (C.2)
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