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Abstract

This paper develops a novel low-frequency vibration isolation device based on rigid body
dynamics called a Rigid Elastic Vibration Isolator (REVI). The REVI model is realized
by coupling four elastic beams with two rigid bodies monolithically made using 3D print-
ing. The system operates based on the vibration of the intermediate rigid bodies, which
leads to the anti-resonance phenomenon at low frequencies. The dynamic analysis of the
proposed REVI system has been meticulously investigated through analytical methods and
real-world experimentation. The analytical method uses the Spectral element method to
obtain the dynamic response, which is also validated by the experimental findings. Fur-
thermore, the REVI transmittance sensitivity analysis was conducted by adjusting the rigid
mass and system load and exploring methods for generating wide low-frequency bandgaps.
The inclination angle of the REVI system is also varied, revealing the bandgap character-
istics regarding negative transmittance level. The parametric study varying the geometric
properties of the REVI system enhances our understanding of the bandgap and attenuation
characteristics within the attenuation band. The REVI mechanism is practical and eas-
ily implemented, allowing for accurate and repeatable modeling. Moreover, the analytical
observations assist in refining the shape of the REVI mechanism to achieve the necessary
bandgap for the desired transmittance.

Keywords: Vibration isolation, Anti-resonance, Spectral element method, Transmittance,
Band-gap

1. Introduction

The demand for vibration isolators is crucial in several real-life applications, such as
automobiles [1, 2], helicopter rotors [3-5], machine foundations [6, 7], offshore structures
8, 9], high rise buildings [10, 11|, space structures [12] etc. In general, vibration isolation
can be easily achieved through passive vibration isolation devices [13] such as base isolation
devices [14-17]. However, structures in most civil and mechanical engineering applications
are subjected to lower-frequency vibrations [18-20]. This lower frequency vibration isolation
can be achieved by designing resonators with lower natural frequency [21-24], i.e., having
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heavier mass or lower stiffness. However, lower stiffness and heavier mass are difficult to
achieve from a stability perspective. Therefore, researchers are inclined toward designing
vibration isolators that can work well in lower frequency ranges without increasing their
static mass [25-29].

The occurrence of the anti-resonance in the lower frequency range gives rise to a low-
frequency stop band, which can be identified from the transmittance plot [30-32] . Recently,
researchers have tried to obtain antiresonances using several methods; such as hydraulic
leverage [33, 34], levered spring-mass system [35], beams connected by a spring mass system
[36-38], inertial amplifier mechanism [14, 39-41], effective negative stiffness [42-44], effective
negative mass [45, 46], multi resonating base isolation [16, 38, 47, 48], etc. Besides theoretical
studies, several experimental studies have been performed on fabricated isolators such as
flexible platforms with rigid mass [49, 50|, shape memory alloy spring elements [51], negative
stiffness vibration isolator device [52, 53], compliant lever-type passive vibration isolators
[54]etc.

Fabricating a vibration isolating device with attached resonating units is always chal-
lenging. Few researchers have fabricated the inertial amplifier [55] and negative stiffness
devices [56] for low-frequency vibration isolation. The fabrication of pinned connections and
rigid mass-less bars are the two prime intricacies associated with the manufacturing process
of inertial amplifier devices. Often, slender beams are used at the junction and the thick
section at the middle part to replicate the inertial amplifier [57]. However, the stress con-
centration in slender beams is very high in these devices. Additionally, jointed parts may
get dislocated due to high amplitude vibration in a resonating device that connects springs
and masses. [58, 59].

Due to the intricate forms of many vibration isolation mechanisms, 3D printing is now
widely used in manufacturing [60-62] due to repeatability and dimensional precision [55, 63,
64]. The monolithic model creation using 3D printing technology has reduced the number of
joints in a structure and the geometrical uncertainties of physical modeling. In this paper,
the rigid elastic vibration isolator (REVI) model has been developed using 3D printing
technology. The proposed REVI could be confused with a negative stiffness [46, 65] or an
inertial amplifier model due to geometric resemblance; however, the working mechanism of
REVT and its intrinsic properties are very different. For the analytical study of this REVI
model, its dynamic stiffness matrix has been developed using spectral element matrix and
rigid body dynamics [66-68]. The natural frequency of the developed REVI model has been
obtained by experimental investigation, which has been used to compute the rotational
stiffness of the beam joint. Further incorporating the rotational stiffness, the modified
dynamic stiffness matrix has been obtained. The transmittance of REVI has been found
experimentally, validating the analytical model developed. The primary novelty of the paper
lies in fabricating a monolithic vibration isolator that uses the concept of rigid body dynamics
and anti-resonance for broadband vibration isolation. Finally, a parametric study by varying
nodal masses has been performed to gain insight into the physics behind antiresonance
occurrence in transmittance. Additionally, a detailed study of change in transmittance level
due to variation in geometric design has been carried out, which illustrated that the proper
geometric design of REVI can create a double antiresonance peak in transmittance level,
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which results in a wider bandgap with required vibration transmittance.

This manuscript is organized as follows. Following this introduction, in section 2, a de-
tailed procedure is provided for fabricating the REVI system and an analytical algorithm
to formulate the dynamic stiffness matrix using the spectral element method. section 3 pro-
vides a detailed procedure to estimate the rotational stiffness of the semi-rigid joint of the
REVI system experimentally. section 4 describes the complete analytical and experimental
procedure for obtaining the transmittance. A comparison study of the transmittance param-
eters obtained from both analytical and experimental is shown in section 5. Additionally, a
few parametric studies were conducted to evaluate the band-gap characteristics for different
geometric parameters of the REVI system, such as mass ratio, inclination angle, etc. Finally,
the conclusion from the findings is summarized in section 6.

2. Theoretical analysis and design of REVI

This section provides a detailed procedure to fabricate the REVI model and a complete
analytical algorithm to formulate the dynamic stiffness matrix using the spectral element
method.

Table 1: Material and Geometrical properties

Apparatus Property Symbols Units Values
. Density kg/m> 778.89
PLA material Young’s modulus g é/Pa 2.9
Length l m 0.0453
Width b m 0.01
Elastic beam Thickness d m 0.001
Cross-sectional area = bd m? 107°
Second moment of area I = bd>/12 m? 8.33x10713
Length l m 0.01
Width b m 0.01
Rigid mass Thickness d m 0.01
Mass m, = bdlp kg 7.88921074
Polar moment of inertia .J, = m,d?/6 kg/m? 1.29821078
Force transducer Serll\?;:;lty ]\}f m\l/;{g kN 03222)7
T 7
Two accelerometers Serll\?;;:lty ]\Z[a mV/ 1({rgn/ s) 04022 6

2.1. REVI model fabrication

The CAD model of the proposed REVI is made in AutoCAD software, which is then
converted to a .gcode file using Ultimaker Cura software (Figure 1 (a)). The .gcode file
is then printed in the 3D printing device (Ender) with the help of additive manufacturing
technology (Figure 1 (b)). The monolithic 3D printed REVI model is demonstrated in
Figure 1 (c¢). The material used for the REVI model is polylactic acid (PLA), whose density

3



s was calculated by finding the sample’s ratio of mass and volume. The model and sensors’
o7 overall material and geometric properties have been described in Table 1.
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Figure 1: (a) CAD model of the REVI ; (b) 3D printing device; (c) 3D printed proposed REVI; (d)
Analytically modeled REVI and (e) Degrees of freedém and boundary conditions at each node
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2.2. Analytical model development

The REVI model is realized by coupling four elastic beams with two rigid bodies, as
shown in Figure 1 (d). Exploiting the symmetry of this system, The analysis of only half
part (shown in Figure 1 (e)) of the REVI has been carried out. Rigid body dynamics and
spectral element techniques are used to obtain the global dynamic stiffness matrix [68].
The elastic beams are slender and assumed to follow the Euler-Bernoulli beam theory. The
beams are modeled as frame elements, with three degrees of freedom in each node: axial,
transverse, and rotational. To obtain the dynamic properties of the entire system, the REVI
is subjected to input base excitation at one end. The output dynamic response at the other
end is obtained regarding displacement. The details on the mathematical formulation of the
dynamic stiffness matrix are provided in the subsequent sections.

2.2.1. Spectral element matriz in local coordinate system
The governing differential equation of motion (GDEM) for i'* beam element vibrating
along the transverse direction can be expressed as follows,

0 (,t) 0?v (z,t)
pr= ) pa S g 1)

and for axial direction, the GDEM can be defined as

OPu(x,t)  Ou(x,t)
P T on

=0 2)

Here, w and u represent the transverse and axial displacement of the i** beam, which
depends on the spatial coordinate (z) and time (¢). The parameters EI and pA denote
the beam’s flexural rigidity and mass per unit length. A harmonic solution for the gov-
erning equation described above can be derived through the variable separable method for
transverse direction, i.e.,

v(z,t) =V (z)e ™ (3)

and, for axial direction, i.e.,

u(x,t) =U (x)e ™ (4)

Here, V(x) and U(x) represent the amplitude of transverse and axial displacement of
the i’ beam as a function of the spatial coordinate alone, and w is the frequency of the
excitation. By substituting equation Eq. (3) and Eq. (4) into equation Eq. (1) and Eq. (2),
the differential equations can be transformed into the spatial domain as follows:
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E i WipAV (2) =0 (5)
and,
02U (z
E &Cg ) +w?plU (2) =0 (6)

Under the assumption of a uniform section, where both EI and pA remain constant
along the entire length of the beam, the transverse solution to the given equation can be
expressed using hyperbolic trigonometric functions.

V (z) = Ay sin (Ax) + Ag cos (Az) + Az sinh (Az) + A cosh (Az) (7)

and similarly, the solutions for the axial directions can be obtained as

U (z) = By sin (ux) + Bs cos (ux) (8)

where, A; through A, B; and B, represent unknown arbitrary constants. A\ and pu
represent the wave numbers for transverse and axial direction. By substituting equation
Eq. (7) and Eq. (8) into equation Eq. (5) and Eq. (6), the wave numbers A and u can be
expressed as a function of the excitation frequency w as follows:

sjwipA
EINV (z) — w?pAV () = 0= \ = (”Ef} 9)
and
2 2 w?p
—FApU (z) + w*pAU () = 0= p = = (10)

The state vectors at a single end of i beam element, specifically rotation (¢), axial force
(P), bending moment (M), and shear force (V'), can be expressed in terms of the transverse
displacement (w) and axial displacement (u) as

¢ (z,t) =VI(z)e ™ F,(z,t) = BEAU! (x)e ¥, (11)
M (z,t) = EIV () e ! F, (x,t) = EIVHT (z) e

Substituting Eq. (7) and Eq. (8) in Eq. (11), the displacement state vectors for i beam
element shown in Figure 1 (e) can be defined as

7



D=HO=0=H'D (12)

138 where,

139 Dj:{ U; U ¢z Ui+l Vi1 ¢i+1 }T’G):{ By Al A2 By A3 A4 }T and

0 0 0 1 0 0
0 0 1 0 0 1
0 A 0 0 A 0
H; = sin (pl) 0 0 cos (pul) 0 0 (13)
0 sin () cos (Al) 0 sinh (Al)  cosh ()
0 Acos (Al)  —Asin (Al) 0 Acosh (Al)  Asinh () |
140 Here, [ is the length of the i* beam element. Similarly, the force state vectors for i**
11 beam element shown in Figure 1 (e) can be defined as
Fj == XjKj@ (14)
T
w  where, Fj={ Fu F; M, Fys1) Fyir1y M } . Here, X,
={ Fui (0) F,i(0) Mi(0) Fuarny(Ly) Fyarny (L) M (Ly) }
us and K, can be defined as
[ —EA 0 0 0 0 0
0O FEI 0 0 0 0
0 0 —FEI 0 0 0
Xi=l o 0o 0 BEA 0 o0 (15)
0 0 0 0 —FI 0
|0 0 0 0 0 EI |
144 and,
0 0 0 0 0 0
0 3 0 0 A3 0
0 0 —\2 0 0 A2
K;= pcos (uLy) 0 0 —psin (puL;) 0 0 (16)
0 —Mcos(AL;)  Asin(AL;) 0 A cosh (ALj)  A?sinh (ML)
0 —NZsin (AL;) —A%cos (ML) 0 A?sinh (AL;)  A%cosh (ML)

s Substituting Eq. (12) in Eq. (14), the force-displacement relationship between the two ends
us of of the i'® beam element can be defined as

8



7 Here, S; is the dynamic stiffness matrix, also known as the Spectral element matrix of the
us 1" beam element, which can be expressed as

S11 0 0 S14 0 0
0 S22 s23 0 S35 89

0 s32 s33 0 S35 S36

S’ = (18)
S41 0 0 S44 0 0
0 s59 ss3 0 s55 Ss6
| 0 se2 Se3 0 Se5 Ses |
1 Wwhere,
EA p cos (ul;)
S11 = S44 = :
sin (pl;)
. EAp
S14 = S41 = sin (11 1;)
o e _ BI XN’ (cosh (M;) sin (A1) + cos (A1) sinh (A ];))
2T cos (Al;)cosh (A [;) — 1
EI \?sin (X 1;) sinh (A 1;)
823 = —S56 = —
cos (Al;) cosh (A l;) — 1
o EI X3 (sinh (A [;) + sin (A 1;))
7 cos(M;)cosh (M) — 1
EI X? (cos (A1) — cosh (A 1;))
S26 = —S35 =
cos (Al;) cosh (A l;) — 1
o s EI X (cos (Al;)sinh (Al;) — cosh (A1) sin (A 1;))
e cos (Al;) cosh (A ];) — 1
o EI'X (sin (Al;) — sinh (A [;))
7 cos (M) cosh (M ;) — 1
150 The displacement continuity equations and force equilibrium equations are used to derive

151 the relation between primary node 3 (center of the rigid body) and secondary node 3g;
152 (beam’s node connected to the rigid body). For beam i, X; and Y; are distances between
153 master node 3 and slave node 3,; in global coordinates. Beam’s local axis system makes an
1sa angle 6; with the global axis. The distances x; and y; in the local coordinate system are
155 derived as

Xi

x; cos (6;) —sin (6;)
]| "

Ui - sin (0;)  cos (6;)
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The dynamic stiffness matrix of i** beam incorporating the second node at the center of
gravity of a rigid body can be defined as

R'=T,;S T,

where,

0
1
0
0
0

o O = O O

0
0
0
1
0

o O O o O =

000

0
0
0
0
1

0

0
0
0
Yi

1

2.2.2. Spectral element matrix in global coordinate system

(20)

(21)

Further, the dynamic stiffness matrix in the local coordinate system R; is transformed

into a global coordinate system by coordinate transformation matrix T as

where,

The force-displacement relation for beam 1 can be written as

Similarly, the force-displacement relation for beam 2

{

sin(6;) 0 0 0
—sin(6;) cos(#;) O 0 0
0 0 1 0 0
0 0 0 cos(6;) sin(6;)
0 0 0 —sin(6;) cos(6;)
0 0 0 0 0
F, (K, Ki, | [ U
F, }: | Kl Kl | {Ug}
can be written as
F, [ Kg2 Kgs ] U,
F, }: | K2, K2, | {Ug}

{

K =TR'TT

_ o O O O O

where, U; is displacement vector and F; is force vector of j node as

(22)

(23)



166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

2.2.3. Assembly

Due to inertial mass in the axial and transverse direction, the inertial force matrix and
polar moment of inertia in the rotational degree of freedom must be added at corresponding
nodes. Let m; and J; be the mass and polar moment of inertia at j** node. The inertial
force matrix is written as

mj 0 0
Zi=—w’| 0 m 0 | U (27)
0 0 J
0

The final assembled dynamic stiffness matrix of the system in global coordinates can be
written as

F, K, -1, 0 Ki, U,
L K Ki, Ku+Ki-I Us
K

2.2.4. Boundary condition

The analytical model exploits the symmetricity of the system, which restrains the degree
of freedom in the v direction for node 1 and 2, i.e., v;y = v = 0. Node 1 will be fixed with
the base plate, which can move only in the u direction, so the rotational degree of freedom
at node 1 will be restrained, so ¢; = 0. However, at node 2, the rotational degree of freedom
is not fully restrained. Therefore, the rotational spring of stiffness k,. is modeled at the node
2. Therefore, the rotational spring with stiffness k, has been modeled at node 2. Therefore,

the rotational spring stiffness &, will be added in the global dynamic stiffness matrix (K) at
the stiffness coefficient corresponding to moment and rotation at node 2 as

K(6,6) = K(6,6) + k, (29)

The boundary conditions of this system are defined as

vy =¢1=0
’U2:O
MQZkT¢2 (30)

After applying the boundary conditions, the reduced force-displacement equation can be
written as

11
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where, the reduced stiffness matrix (Kj.) has been derived in Appendix A.

3. Estimation of rotational stiffness k,

While the rotational degree of freedom is fully restrained, the rotational stiffness k, is
infinite; however, the rotational stiffness value zero indicates free rotation. As node 2 is a
semi-rigid joint, the value of its rotational stiffness k, will be between 0 to oo, which needs
to be obtained experimentally. In this paper, the experiment has been carried out to find
the system’s natural frequency and equate it with the analytical natural frequency of the
same mode to determine the rotational stiffness k, of the joint.

3.1. Experimental setup for determining natural frequency

The natural frequency of the REVI can be estimated by fixing it to a fixed base situated
at a certain height, and an accelerometer was attached at the bottom of the sample. Small
displacement was provided at the bottom in a vertical direction, allowing the model to
vibrate freely (Figure 2 (a)). The vertical acceleration vs. time was recorded as shown
in Figure 2 (b), which is then converted to the frequency domain using the Fast Fourier
Transform (FFT) algorithm (Figure 2 (c)). The FFT graph’s maximum amplitude is the
REVT’s natural frequency, i.e., 92 Hz (w,, = 578.05 rad/s).

3.2. Determining natural frequency analytically

Nodal masses and boundary conditions are similar to the experimental setup and have
been applied in the Eq. (31) to determine the natural frequency. One side of the designed
REVI has been fixed at the top, and the other is free to move. Therefore, The inertia
matrix (I;) at node 1 is zero as no additional mass is attached. Further, the attached
accelerometer at the bottom is modeled as a point mass at node 2. my = m,/2 (ms is half
of the accelerometer mass due to symmetric condition), and Jo = 0 has been used in the
inertia matrix Io. The inertia matrix at node 3 will have mass (ms = m,.) and polar moment
of inertia (J3 = J,.) as calculated for a rigid body in Table 1.

The node 1 is fixed at the top, restraining the displacement in the u direction, thus
incorporating the boundary condition u; = 0 in Eq. (31). Further, by static condensation

12
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213

214

215

216

217

218

the reduced matrix Ky (w, k) has been obtained Appendix B. The determinant of the
dynamic stiffness matrix will be zero at its natural frequency.

|Kpe1 (Wi, k)| =0 (32)

The analytical natural frequency for free rotation (k, = 0) and restrained rotation (k, = c0)
has been obtained as 73.21 Hz and 100.27 Hz, respectively. It validates that the experimental
natural frequency lies within the natural frequency obtained analytically, 73.21 to 100.27 Hz.
Therefore, applying this concept, the rotational spring stiffness k, is obtained in Figure 3
by varying k,. The |Ky.(wn, k)| is found zero at rotational stiffness k, = 0.3591 Nm/rad.

0.08

0.06

0.04

0.02

(=)
T

-0.02

S

(e}

N
T

Accelerometer reading amplitude (mV)

20.06 . . . .
5 52 5.4 5.6 5.8 6

Time (s)

Accelerometer reading amplitude (mV)

20 40 60 80 100 120 140 160 180 200
Excitation frequency (Hz)

Figure 2: (a) Free vibration of REVI model for estimation of natural frequency; (b) Time acceleration plot
of the free vibration analysis; (c¢) Frequency domain plots with the help of FFT algorithm (sensitivity of
accelerometer = 4.98 mV /ms~2)
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Figure 3: Plot of determinant of dynamic stiffness matrix for natural frequency w, = 578.05 rad/s with
rotational spring stiffness k.. The zero determinant is shown by a circle marker at the rotational stiffness
k, = 0.3591 Nm/rad.

3.3. Natural Modal shapes

The REVI model has been simulated in COMSOL software, incorporating geometric and
material properties outlined in Table 1 and utilizing the rotational stiffness (k) determined
in Figure 3. The model considered in the COMSOL software is the same as in the analytical
model due to its symmetricity, as shown in Figure 1 (d). The results include the natural
frequencies and their corresponding modal shapes, as illustrated in Figure 4 (a-c). Addition-
ally, analytically obtained natural frequencies are presented in Figure 4 (d) through a plot of
log1o(|(Kpe)|) against frequency. This representation effectively highlights the occurrence of
spikes at natural frequencies, where the determinant of the spectral element matrix becomes
zero. The negligible difference between analytically derived and COMSOL-generated natu-
ral frequencies serves as a validation of the model. The modal shapes depicted in Figure 4
(a-c) provide insights into the vibration mechanism of the model..

14
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of spectral element matrix (Kj.) of REVL

4. Estimation of vibration isolation performance

The vibration isolation performance is estimated from the vibration transmittance from
the base to the system. The transmittance in the u direction between node 1 and 2 has been

obtained analytically and experimentally for validation.

4.1. Ezxperimental procedure for transmittance computation

This section shows the detailed experimental procedure to compute the transmittance.
Thus, this section is further subdivided into two parts, i.e., experimental setup, which shows
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the complete procedure of setting up the REVI to the dynamic shaker, and post-processing,
which elucidates the detailed procedure of obtaining the transmittance.

4.1.1. Ezxperimental setup

As shown in Figure 5 (b), the experimental setup consists of a PLA rigid beam whose
one end is fixed with the base plate of the dynamic shaker, and the other is attached to the
REVI model. A force transducer of sensitivity 2248 mV /kN is connected between the rigid
beam and the REVI model (Figure 5 (b)) to record the amount of reaction force generated
due to the vibration of REVI. Two accelerometers (A; and As) having a sensitivity of 4.98
mV /ms™? have been placed at the top and bottom of the REVI to measure the transmittance
as shown in Figure 5 (b). The accelerometers and force transducer are connected in the
corresponding channels of the data acquisition system (DAQ) as shown in Figure 5 (¢). The
DAQ is then connected to the PC interface, which converts the continuous analog signals to
discrete analog signals, which can be simulated through LabView software (Figure 5 (d)).
With the aid of a power amplifier (Figure 5 (a)), desired frequency values and voltage gain
are provided to the dynamic shaker, which converts electrical energy to mechanical energy
and produces a harmonic excitation at the base plate of the shaker system. The whole setup
is configured to vibrate vertically.

4.1.2. Post processing of the measured raw data

The dynamic shaker provides monochromatic harmonic sinusoidal base excitation to the
REVI. The frequency range is varied from 20 Hz to 160 Hz. The LabView software obtains
the time vs. amplitude graphs in millivolt (mV). The raw data for each frequency has
been acquired after waiting a few seconds to allow the system to vibrate steadily. The time
vs. force in Newton (N) and time vs. acceleration in m/s? are obtained from the force
transducers and accelerometers using the sensitivity values given in Table 1 as shown in
Figure 5 (e) to Figure 5 (g). The frequency domain plots of the corresponding time domain
plots can be obtained through the FFT algorithm as shown in Figure 5 (h) to Figure 5 (j).
The ratio of frequency amplitude of the bottom accelerometer (Ay) to the top accelerometer
(A1), also known as transmittance (7,.) for the above frequency range, is compared with the
corresponding analytical methods shown in Figure 6.

4.2. Analytically obtaining transmittance

In this setup, the force transducer is attached to node 1, the accelerometer is attached
to node 2, and the rigid body of PLA is at node 3. The nodal masses and polar moment
of inertia at node 1, 2 and 3 due to force transducer, accelerometer, and rigid body will be
accounted as my = M;/2, J; =0, my/2 =m,, Jo =0 and mg =m,, J3 = J, (Table 1).

Here, node 1 is fixed at the base plate of the beam connected to the shaker. The
displacement of node 1 will be the same as the rigid beam end due to the vibrating shake
base plate. The rigid beam is vibrating only in u directional degree of freedom. As the system
is assumed to be in the linear range, the base displacement boundary condition u; = 1 can
be assumed for all the frequencies. Applying base excitation boundary condition by static
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Figure 5: (a) Power amplifier to vibrate the shaker system at desired gain and frequency; (b) REVI connected
to the dynamic shaker system; (c¢) DAQ device used to collect the response of accelerometers and force
transducers; (d) Simulation of data acquisition system using LabView software; (e) to (j) Time and frequency
domain response of force transducers and accelerometers at a frequency of 92 Hz.

17



27 condensation to Eq. (31), the reduced Force displacement equation can be determined as
o given in Appendix C.

279 The transmittance of vibration in u direction of base (node 1) uq, to the accelerometer
20 (node 2) uy can be obtained by

T, = logy <@> (33)

O Experiment
—REVI
= = =C(lassical

Transmittance
[a—y
n
\o
=
hn

0 50 100 150 200 250
Excitation frequency (Hz)

Figure 6: Transmittance of the proposed REVI system from experimental and analytical computation
compared to an equivalent spring-mass system. The REVI system’s bandwidth (shaded region) is 0.1767
for one-fourth amplitude transmittance.

1 5. Results and discussions

282 The transmittance of REVI has been compared with the classical spring mass resonator
23 of a similar natural frequency (92 Hz). In equivalent classical resonator; keeping the mass
20 (M. = M), the equivalent spring stiffness (K.) of classical resonator has been obtained as

K, =w? M, (34)
18
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The transmittance of the classical resonator can be obtained as

R () .

The transmittance obtained for REVI using Eq. (33) and classical resonator using Eq. (35)
is plotted in Figure 6 in solid and dashed lines, respectively. The transmittance peak occurs
at resonance frequency (f, = 92.0487 Hz). However, an anti-resonance dip is obtained in
REVI at (f, = 114.145Hz). The transmittance of REVI is less than the classical resonator
till (f, = 159.65 Hz) as shown in Figure 6. Generally, any system’s allowable transmittance
(Tp) is given. Let the allowable transmittance be (T = log;;0.25). Therefore the black
dashed line shown in Figure 6 shows logarithmic transmittance level, which cuts trans-
mittance of REVI at (fs; = 107.726 Hz) and (fs,, = 128.52Hz) and classical resonator at
(f. = 205.237Hz). The frequency ranges fs to fs» demonstrates the stop band for the
REVT system for maximum transmittance Ty, which is much less than the possible stopping
frequency we get from a classical resonator. The bandwidth of REVI can be calculated as
[35]

Ws2 — Ws1 _ fs2 - fsl

BW =
vV Ws1 Ws2 V fsl fsQ

= 0.1767 (36)

5.1. Ezxperimental validation

A harmonic monochromatic sinusoidal base excitation of frequency range 20 Hz to 160
Hz is provided to the REVI through the dynamic shaker. The acceleration time histories
and their corresponding frequency domain plots can be obtained using the procedure defined
in subsection 4.1. The ratio of peak frequency amplitude of the bottom accelerometer to the
top accelerometer (log,y(A2/A1)), also known as transmittance, has been plotted in Figure 6
with blue circles. The transmittance calculated here is the ratio of acceleration in the u
direction at nodes 2 and 1, which will be equal to velocity or displacement transmittance.
Further, this experimental transmittance for the above frequency range is compared with
the corresponding analytical displacement transmittance. From Figure 6, it is observed
that the experimental transmittance values are successfully validated with the analytical
transmittance of REVI, providing us essential confidence in our proposed methodology.

5.2. Parametric Study

The sensitivity of resonance and anti-resonance peaks in transmittance has been studied
by varying the masses at nodes 2 and 3. The transmittance 7, has been plotted (Figure 7)
for the following cases as

e The mass my = 0 and mass m3 = 2P m,., where p varies from —1 to 3 as shown in
Figure 7 (a). It has been observed that resonance and anti-resonance occur at the same
frequency. This frequency shifts to a lower frequency as the rigid mass mgs increases.
However, in this scenario, the width of the bandgap is too narrow.
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e The mass my = 2¢9m, and mass ms = m,, where g varies from 2 to 6 as shown in
Figure 7 (b). It can be observed that by increasing mass at node 2, the resonating
frequency of transmittance shifts to a lower frequency. However, the anti-resonance
frequency does not change. So, it can be concluded that anti-resonance depends on
the rigid mass of the REVI and not on the system’s resting mass. The higher the mass
ratio a = z—i, the wider will be the band gap. However, the mid-frequency f, depends
on the rigid mass ms.

e The mass my = 29m, and mass ms = 2P m,., where where p varies from —2 to 2 and
q varies from 2 to 6 as shown in Figure 7(c). Here, the mass ratio a = 2* is constant.
It can be seen that the resonance and anti-resonance both peaks shift towards a lower
frequency range as the system’s total mass increases. Similarly, it can be observed
that the bandgap also gets wider for higher system mass.

(a) 6=6° (b)
S) «
: 1 1 g=6 q=2
ot
a 1) by
£ 0fF— e SRS ——— () = o
: .
§ -1t -1
& p=3 pi=-1
-2 . - - - -2 . - . .
0 50 100 150 200 250 0 50 100 150 200

Excitation frequency (Hz)

Figure 7: Variation of Transmittance (7,) with the excitation frequency for different mass ratios. (a) The
mass my = 0 and mass m3 = 2P m,., where p varies from —1 to 3, (b) The mass my = 2?m, and mass
ms = m,, where ¢ varies from 2 to 6, (¢) The mass ms = 29m, and mass mz = 2P m,., where where p varies
from —2 to 2 and ¢ varies from 2 to 6

5.2.1. Relative transmittance
Anti-resonance frequency is the critical parameter for designing the base isolator, as it
determines the mid-frequency of the band gap. The following plots have been obtained
Figure 8 by keeping the mass ms = m, constant and varying the mass my = 29, where
q increases from 0 to 2, for different transmittance, to obtain the rationale behind this
anti-resonance phenomenon as follows.
e First of all the transmittance T, = log;,(}2) has been plotted in Figure 8 (a). As
discussed earlier, this demonstrates the constant f, frequency with an increase in
bandwidth as an increase in mass ms.

e Further in Figure 8 (b), the transmittance of rigid mass mz in 7)1 = log,o(;2) has
been plotted. It can be noticed that the resonance frequencies are the same as that of
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T, but the anti-resonance frequency is changed. The precise observation has noticed
that all three cases’ transmittance plots have one common point, which appears at the
anti-resonance frequency f,.

e The observation of common point motivated to obtain the transmittance of node 3
for node 2, to get the knowledge of the relative motion of masses ms and msy. The
Transmittance T,o = log;o(}2) and Transmittance 7,3 = log;,(22) has been plotted in
Figure 8 (c). In all three cases and both the transmittance 7,5 and T3, the resonance
frequency is the same as that of anti-resonance frequency f,. So, it can be concluded
that the anti-resonance of the system depends on the relative resonance of the base

isolator concerning the load of the system resting on the isolator.

('d) 6=6° (b)
2 q:2< q=0 ;2
1
44 0 ——}
ﬁ
ER f,=114.145
52
_f,=114.145 3
100

0 50 100 150 200 250 0 50 150 200 250
Excitation frequency (Hz)

3
(c) T, =114.145

—

Transmittance (7;1)

Transmittance (77.)
(=]

'
)

Transmittance (T2, 1;3)

Figure 8: Variation of transmittance (7;.) and relative transmittance’s (T,1) and (T}.2) with the excitation
frequency for different mass ratios. The mass m; = 2?9 m, and mass mo = m,, where ¢ increases from 0 to
2 (a) Transmittance T = logyo(32), (b) Transmittance 7,1 = logy(32), (¢) Transmittance Tro = logyo(52)
and transmittance 1,3 = logw(;’—z). The resonance in relative transmittance results in antiresonance in
transmittance (75.).

5.2.2. Sensitivity to inclination angle

Further, a parametric study has been conducted showing the variation of transmittance
as a function of excitation frequency for different values of inclination angle (6 = 20°, 30°,
33.42°, and 40°) as illustrated in Figure 9 (a). Figure 9 (b) shows a contour plot about
the negative transmittance profile (represented by negative values of transmittance plot
in Figure 9 (a)) as a function of excitation frequency and inclination angle for enhanced
comprehension of the bandgap and level of attenuation within the attenuation band. From
Figure 9 (b), it can be observed that double anti-resonance peaks can be obtained in the
attenuation band for inclination angles up to 33.41°. The presence of two neighboring anti-
resonances without an in-between resonance peak is noteworthy since this increases the
bandwidth of the attenuation effect significantly [69]. For 6 = 33.42°, the two attenuation
peaks merge to form a single attenuation peak. Further, an increment of the angle creates
the resonance cancellation phenomenon, completely vanishing the attenuation peaks and
further reducing the band gap.
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Figure 9: Effect of inclination angle on bandgap having node masses as 7.889x10~* kg. (a) Transmittance
plots for different values of inclination angle 6. (b) Attenuation profile (represented by negative values of
transmittance plot) as a function of excitation frequency and inclination angle. In the attenuation band,
double attenuation peaks can be obtained for inclination angles up to 33.41°. For § = 33.42°, the two
attenuation peaks merge to form a single attenuation peak. Further, an increment of the angle creates the
resonance cancellation phenomenon, completely vanishing the attenuation peaks and further reducing the
band gap.
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Figure 10: Attenuation profile (represented by negative values of transmittance plot) as a function of
excitation frequency and several geometric parameters such as (a) Length of the beam. (b) The thickness
of the beam. (c¢) The mass ratio (ratio of the rigid mass to the primary mass of the system).

5.2.3. Sensitivity of beam length, thickness, and nodal masses

The variation of the anti-resonance frequency of other geometric parameters of the REVI
system has been observed using the contour plots shown in Figure 10. Figure 10 (a) to
(c) shows the variation of negative transmittance profile (represented by negative values
of transmittance) as a function of excitation frequency and three predominant geometric
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parameters such as length of the beams, the thickness of the beams and the nodal mass
ratio. Figure 10 (a) depicts the emergence of double anti-resonance dips in the first band
of REVI as we increase the length of the beam. Further, Figure 10 (b) showcases the linear
change in the position of antiresonance dips as the change in beam thickness. Moreover,
Figure 10 (c) demonstrates the double anti-resonance peaks in the first bandgap coming
closer as the mass ratio increases. The main purpose of the contour plots is to decide the
range of parameters that can be considered to achieve the desired anti-resonant frequencies.

5.2.4. Transmittance metrics and Relative bandgap

In continuation to subsubsection 5.2.3, to quantify the properties of the REVI band
gap with double transmittance drops, three metrics are proposed as shown in Figure 11
(a) following [45]. The metric g, denotes the minimum level of attenuation achieved
within the double anti-resonance drops within the frequency range €2, as illustrated in
the figure. As for the metric Q. = fo — fi, this represents the conventional band-gap
width. In both frequency metrics, the bandwidth is normalized to its central frequency value,
Qnig = %f? Upon normalization, €2,;, and €2, are denoted €%, and 2., respectively.
The variation of metrics as a function of inclination angle is plotted in Figure 11 (b). The
variation in transmittance level (blue curve) can be achieved for an inclination angle from
4 to 33.41 degrees. At 33.42 degrees, the double transmittance drops merge into a single
drop, thus vanishing the transmittance level. Additionally, for an inclination angle less than
4 degrees, the range between the double peaks coincides with zero, thus again vanishing the
transmittance level. Similarly, the red curve shows the maximum relative bandgap, which
increases from 120 percent to 160 percent with an increase in inclination level. It is also
observed that the minimum relative bandgap (black curve) decreases with the inclination
angle, which shows a trade-off between different relative bandgaps.

a b
(a) ® 3
E
. S {25 =
= Bandgap width for minimum S5t 4
§ negative transmittance, Q,;, |fz 2D 12 %
_______________________________ =
g 3 3
E . o I L5 £
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-2 transmittance level, g, o) 1! g
e 0.5 &=
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Figure 11: (a) Illustration of three metrics for the quantification of the relative bandgap size, minimum
transmittance level, and relative band gap size corresponding to the minimum transmittance level; (b)
Variation of the band-gap and transmittance metrics to inclination angle.
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6. Conclusion

The dynamic response analysis of a base-excited novel monolithic rigid elastic vibration
isolator (REVI) system has been conducted using analytical and experimental methods.
The REVI model has been fabricated using a 3D printer. An analytical formulation of the
proposed model is done by applying the spectral element method and rigid body dynamics
concept. The displacement transmittance between the fixed and free end of the REVI has
been validated experimentally, and a stop band of bandwidth of 0.1767 has been obtained
for a maximum allowable transmittance of 0.25. The designed REVI gives a stop band in a
frequency range lower than the equivalent classical spring mass resonator. The antiresonance
phenomenon in REVT facilitates this occurrence of a lower-frequency stop band.

Moreover, parametric studies have been conducted by varying the masses to obtain the
rationale behind the anti-resonance peak in transmittance. The higher the mass ratio «,
widens the band gap, and the increase in the mass shifts the band towards the lower fre-
quency range. The relative resonance of the rigid mass of REVI to the system’s mass gives
the antiresonance in the system transmittance. Additionally, an increment in the inclination
angle ¢ enables us to obtain two neighboring anti-resonance peaks, significantly increasing
the attenuation effect. The variation of € also provides an insight into the bandwidth char-
acteristics (horizontal and vertical) from which an optimum angle can be decided depending
on the design requirement.

The primary novelty of the paper lies in fabricating a monolithic vibration isolator that
uses the concept of rigid body dynamics and anti-resonance for broadband vibration isola-
tion. The fabrication of the REVI is straightforward and without any manual connection.
Therefore, this monolithic model has the benefits of repeatability and accuracy. Moreover,
the analytical method is simple enough to apply in any modified version of the solved REVI
system. Thus, the proposed REVI system can be a vibration isolator for the obtained stop
band. In the future scope of this work, the proposed REVI type system can be applied in
several real-life applications, such as automobiles and machine foundations where limited
vibration transmittance is allowed.
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Appendix A. Reduced dynamic stiffness matrix (Kp.)

The global force-displacement relation derived can be written as per Eq. (28) as

Fxl
F

yl

M,

[ Ky Ko Ky ]
KQI KQQ
L Kgl KQQ _
K

Uy
U1
01
U2
V2
b2
Uus
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b3

Now, rearranging the global spectral element matrix (Kj) by separating known degrees of
freedom (from boundary conditions given in Eq. (30)) as
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(A.2)

Now, applying the static condensation to the Eq. (C.1), the condensed spectral element
matrix (Kj.) can be obtained as

I_{bc -
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(A.3)
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Now, rearranging the global spectral element matrix K by separating known degrees of
s freedom as per boundary conditions (u; = v; = ¢ = vy = 0)
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B.1), the condensed spectral element

Now, applying the static condensation to the
matrix (K1) can be obtained as

Kbcl =K,, (B2)

Appendix C. Reduced force displacement equation for transmittance study

Applying the boundary conditions of zero displacements, the dynamic force-displacement
equation can be written as per Eq. (31). Further, the obtained dynamic stiffness matrix
Eq. (A.3) has been divided into four parts as per known and unknown degrees of freedom
as follows

Fyi Ky ‘ K., [ up =1
Fip ‘ Uz
M.
2| | ) 2 )
F:ri? Krl ‘ Krr Uus
F Y3 ‘ U3
| Ms | | | 1L o
Fxl | Kll Klr 1
— = _ _
Fr 1 L Krl Krr u,
Finally, the reduced force-displacement equation can be written as
Fr = er + Krr u, (02)
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