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Researchers are drawn to exploring wave dispersion in nonlinear systems because of the amplitude-10

dependent tunability of the bandgap. This paper investigates the amplitude-dependent wave dis-11

persion in continuous beam structures supported periodically by nonlinear springs. Additionally, it12

examines the influence of inherent beam damping on wave dispersion. The analytical framework13

consists of homogenization of the unit cell and the method of multiple scales with two distinct14

time scales to derive the wave dispersion equation. The proposed analytical approach for non-15

linear wave propagation is validated through numerical finite element simulations. It is observed16

that the frequency shift is positive for hardening and negative for softening supports. Following17

this, the dispersion shift over time in the damped systems is examined by considering viscous and18

strain rate-dependent damping. The sensitivity of strain rate damping to propagation constant and19

the independence of viscous damping from propagation constant are thoroughly investigated. In a20

damped system, the frequency shift diminishes over time as the amplitude decreases reducing the21

effect of nonlinearity. This study opens up avenues for controlling or filtering vibrations through22

the tunable bandgap of continuous nonlinear metamaterials.23

Keywords: Homogenisation, Method of multiple scales, Frequency shift, Amplitude modulation, Amplitude24

dependant dispersion25

I. INTRODUCTION26

Over the past decade, wave dispersion in linear meta-27

materials has garnered considerable attention from re-28

searchers due to its complex dispersion patterns, filtering29

capabilities, and the emergence of frequency bandgaps.30

The presence of nonlinearities within these systems has31

further piqued the interest of the engineering commu-32

nity, revealing fascinating phenomena such as amplitude-33

dependent dispersion and alterations in group velocity34

with weak nonlinear effects, as well as the propagation of35

solitary waves like solitons under strong nonlinear condi-36

tions. This exploration of wave propagation in nonlinear37

metamaterial has led to the proposal of various engineer-38

ing applications, including diodes [1, 2], switches [3], and39

filters [4].40

Several recent studies have analyzed amplitude-41

dependent dispersion in discrete nondispersive systems42

such as monoatomic and diatomic chains with cubic non-43

linearity using perturbation method [5], nonlinear tri-44

atomic metamaterial [6, 7], monoatomic chain with non-45

linear embedded resonator [8], nonlinear monoatomic46

chain with embedded resonator[9, 42], nonlinear ro-47
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ton like chain[11] etc. Additionally. nonlinear be-48

havior such as amplitude-induced bandgap[10, 12], self-49

switching functionality [13], bridging coupling mecha-50

nism [14], band tunability [43] and nonreciprocity [44, 45]51

etc has been observed in variety of discrete systems.52

Different analytical methods such as Lindstedt–Poincaré53

perturbation technique, method of multiscale, harmonic54

balance method, method of averaging, Jacobi’s elliptic55

balance method [60] etc [15, 16] have been used in deriv-56

ing analytical solutions of the nonlinear dynamic systems57

in the past. However, the method of multiple scales is58

well suited for the damped system as it solves for ampli-59

tude modulation [17–20]. In the case of nonlinear contin-60

uous systems, researchers generally tackle finite systems61

and obtain frequency response function [21–28]. In non-62

linear continuum elastic media with topological mechan-63

ics the method of multiple scales is widely used [58, 59].64

In the case of continuous infinite structures, the nonlin-65

ear dispersion shift is obtained for a few systems such66

as a bar with periodically embedded resonators [29–31],67

beam with periodic resonators [32, 33] etc. The quasi-68

static wide bandgap can be induced by a beam on an69

elastic foundation for linear systems [35]. Additionally70

by incorporating nonlinear supports, the tunable quasi-71

static bandgap can be obtained [36]. This has motivated72

us to study the amplitude-dependent wave dispersion in73

infinite long periodically supported damped beams.74

An infinite beam with damping and nonlinear sup-75

ports has numerous practical applications. For instance,76



2

railway tracks can be modeled as infinitely long Euler-77

Bernoulli beams resting on nonlinear spring-dashpot sys-78

tems, making the study of flexural wave propagation es-79

sential for the analysis, design, and health monitoring of80

railway infrastructure [46–48]. Additionally, functionally81

graded foams, which can be modeled as beams supported82

by nonlinear springs with damping [55], are widely used83

in various fields. These include acoustic control [53],84

shock and energy absorption [49, 50], as well as appli-85

cations in the automotive industry [51] and biomedical86

instruments [52]. Furthermore, beams on periodic elastic87

foundations are key for achieving wider bandgap regions88

and stronger attenuation capabilities [56], enhancing pas-89

sive vibration control [54] and other advanced engineer-90

ing solutions.91

Historically, researchers have directed their attention92

towards both nonlinear and linear wave propagation93

within discrete metamaterials, while investigations into94

wave propagation in continuous metamaterials have pri-95

marily focused on linear systems. Concerning nonlinear96

continuous systems, researchers have primarily explored97

frequency response functions within various finite sys-98

tems, leaving a limited examination of wave propagation99

within continuous beam systems incorporating nonlinear-100

ity [34].101

To address this gap, the study delves into the102

amplitude-dependent, time-varying dispersion relation of103

a damped beam supported by nonlinear springs. Specifi-104

cally, it explores the wave dispersion relation of a damped105

beam supported by periodic nonlinear structures, con-106

sidering two types of damping—viscous and strain rate107

damping—alongside both softening and hardening cubic108

nonlinearity. Employing a multiscale method with two109

distinct time scales, the study analytically derives the110

wave dispersion equation. The accuracy of the analytical111

solution is confirmed through comparison with numerical112

results. Initially, the paper discusses the frequency shift113

in undamped systems affected by hardening and soften-114

ing nonlinearities. Subsequently, it examines the disper-115

sion shift over time in damped systems, distinguishing116

between viscous and strain rate damping. The sensitiv-117

ity of strain rate damping to propagation constants and118

the independence of viscous damping from propagation119

constants are thoroughly investigated. In summary, the120

paper extensively explores the amplitude-dependent non-121

linear dispersion in infinitely long damped beams period-122

ically supported by nonlinear springs. These are vital for123

modeling railway tracks, functionally graded foams, and124

enhancing passive vibration control in various engineer-125

ing applications.126

II. METHODOLOGY127

Considering the flexural wave propagation in infinitely128

long Euler Bernoulli beam supported by cubic nonlinear129

springs as depicted in Fig. 1(a), the following analytical130

formulation is derived.131132

A. Governing equation133

The governing equation of motion of the representative134

unit cell shown in Fig. 1(b) can be written as [37]:135

∂2

∂x2

(
EI

∂2w

∂x2
+ Cs

∂3w

∂x2∂t

)
+ ρA

∂2w

∂t2
136

+ Ca
∂w

∂t
+
(
k̃1 w + k̃3 w

3
)
δ(x) = 0 (1)137

where, EI = flexural rigidity, Cs = strain rate-dependent138

damping, Ca = velocity-dependent viscous damping, ρ =139

density, A = cross-section area, k̃1 and k̃3 are liner and140

nonlinear spring stiffness, w denotes transverse deflec-141

tion, x = distance, and t represents time. Further, the142

Dirac delta function was approximated using a homoge-143

nization approach in which the stiffness of the spring was144

scaled down by the inverse of the length of the unit cell145

(1/l) as [38].146

∂2

∂x2

(
EI

∂2w

∂x2
+ Cs

∂3w

∂x2∂t

)
+ ρA

∂2w

∂t2
147

+ Ca
∂w

∂t
+

1

l

(
k̃1 w + k̃3 w

3
)
= 0 (2)148

Further, the governing equation can be written as149

∂2w

∂t2
+ ω2

n

∂4w

∂x4
+ k1 w + c1

∂w

∂t
+ c2

∂5w

∂x4∂t
+ k3 w

3 = 0

(3)

150

where, ω2
n = EI

ρA ,c1 = Cs

ρA ,c2 = Ca

ρA , k1 = 1
ρAl k̃1 and k3 =151

1
ρAl k̃3152

B. Multiple scales Method153

The nonlinear governing equation given in Eq. (3) has154

been solved using the method of multiple scales by intro-155

ducing the scaling parameter ϵ with damping and non-156

linear terms as:157

∂2w

∂t2
+ ω2

n

∂4w

∂x4
+ k1 w + ϵ

(
c1
∂w

∂t
+ c2

∂5w

∂x4∂t
+ k3 w

3

)
= 0

(4)

158

The nonlinear partial differential equation, as pre-159

sented in Eq. (4), involves independent variables x and160

t corresponding to spatial and temporal dimensions, re-161

spectively. The method of multiple scales can be applied162

by employing slow time scales or large space scales. Here,163

by employing a multiscale approach, additional scales are164

introduced to account for slow time scale, denoted as165

T1 = ϵt. These augment the original scales for time166

T0 = t. Another way of the multiple scales method167

by employing spatial expansion is demonstrated in Ap-168

pendix A. The time derivatives can be written as169

∂

∂t
=

∂

∂T0
+ ϵ

∂

∂T1
(5)170
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FIG. 1. (a) The Euler Bernoulli beam periodically supported by nonlinear springs (b) The representative unit cell

Further, the solution can be obtained as171

w(x, t, ϵ) =

1∑
n=0

ϵnwn (x, T0, T1) +O(ϵ) (6)172

By substituting the solution given in Eq. (6) into the173

partial differential equation (Eq. (4)) and employing the174

temporal derivatives provided in Eq. (5), yields175

ϵ2
(
∂2w0

∂T1
2 + 2

∂2w1

∂T1∂T0

)
+ ϵ3

∂2w1

∂T1
2176

+ϵ

(
2
∂2w0

∂T1∂T0
+
∂2w1

∂T0
2

)
+
∂2w0

∂T0
2 + ω2

n

(
ϵ
∂4w1

∂x4
+
∂4w0

∂x4

)
177

+k1 (w0 + ϵw1) + c1ϵ

(
∂w0

∂T0
+ ϵ2

∂w1

∂T1
+ ϵ

(
∂w1

∂T0
+
∂w0

∂T1

))
178

+c2ϵ

(
ϵ2

∂5w1

∂x4∂T1
+ ϵ

(
∂5w1

∂x4∂T0
+

∂5w0

∂x4∂T1

)
+

∂5w0

∂x4∂T0

)
179

+ϵk3 (w0 + ϵw1)
3
= 0 (7)180

Further, collecting terms with a similar power of ϵ, the181

following equation can be written.182

∂2w0

∂T0
2 +

∂4w0

∂x4
+ k1w0183

+ϵ

(
∂2w1

∂T0
2 + 2

∂2w0

∂T1∂T0
+
∂4w1

∂x4
+ k1w1

)
184

+ϵ

(
c1
∂w0

∂T0
+ c2

∂5w0

∂x4∂T0
+ k3w0

3

)
+O(ϵ2) = 0 (8)185

The governing partial differential equations can be ex-186

pressed through the consolidation of terms with similar187

powers of ϵ as.188

R0 +R1ϵ+O(ϵ2) = 0 (9)189

where190

R0 :
∂2w0

∂T0
2 +

∂4w0

∂x4
+ k1w0 = 0 (10)191

R1 :
∂2w1

∂T0
2 + 2

∂2w0

∂T1∂T0
+
∂4w1

∂x4
+ k1w1192

+ c1
∂w0

∂T0
+ c2

∂5w0

∂x4∂T0
+ k3w0

3 = 0 (11)193

Eq. (9) expands the nonlinear equation of motion in194

orders of (ϵ), matching it to the zeroth order and first195

order in (ϵ). The solutions w0, and w1 can be obtained196

by solving equations R0 = 0 and R1 = 0 in progression.197

In the case of flexural wave solution in infinite struc-198

ture, the boundary complexities can be ignored and the199

plane wave solution can be assumed for the equation200

R0 = 0 as [39].201

w0 = A (T1) e
i(κx−ωT0) + Ā (T1) e

−i(κx−ωT0) (12)202

Substituting Eq. (12) in Eq. (10) the dispersion relation203

for the linear system can be derived as204

κ4 − ω2 + k1 = 0 (13)205

Further, substituting Eq. (12) in Eq. (11), the following206

equation can be obtained207

∂2w1

∂T0
2 +

∂4w1

∂x4
+ k1w1208

=

(
2iω

∂A

∂T1
+ ic1ωA+ ic2κ

4ωA− 3 k3A
2Ā

)
ei(κx−ωT0)

209

− k3A
3ei(3κx−3ωT0) + cc (14)210

The particular solution of Eq. (14) contains secular terms211

which lead to nonuniform expansion in scaled time. Since212

the linear operator
(

∂2

∂T0
2 + ∂4

∂x4 + k1

)
is self-adjoint, as213

demonstrated in the Appendix B, the solvability condi-214

tion for eliminating secular terms can be derived. This215

condition is obtained by equating the forcing terms re-216

sponsible for generating the secular terms to zero, which217

leads to the following partial differential equation gov-218

erning the amplitude A.219

2iω
∂A

∂T1
+ ic1ωA+ ic2κ

4ωA− 3 k3A
2Ā = 0220

i
∂A

∂T1
= −iA

(
c1 + c2κ

4

2

)
+

3

2
k3ω

−1A2Ā (15)221

The solution of amplitude A in polar form can be as-222

sumed as A = 1
2a(T1)e

iβ(T1) and its complex conjugate,223

Ā = 1
2a(T1)e

−iβ(T1). Further, the frequency shift due to224
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nonlinearity will be later demonstrated and reflected by225

the complex-valued phase of amplitude modulation. As226

the phase β is a function of slow time scale (T1) it essen-227

tially captures the frequency shift due to nonlinearity.228

To determine the phase, by substituting the amplitude229

A and Ā into Eq. (15) the following equations can be230

obtained.231

i
1

2

(
eiβ

∂a

∂T1
+ i eiβ a

∂β

∂T1

)
232

= −i

(
c1 + c2κ

4

2

)
a

2
eiβ +

3

2
k3ω

−1 eiβ
a3

8
(16)233

Further separating the real and imaginary parts following234

equations can be obtained.235

∂a

∂T1
= −

(
c1 + c2κ

4

2

)
a (17)236

∂β

∂T1
= −3

8
k3ω

−1a2 (18)237

The amplitude modulation can be obtained by solving238

Eq. (17) as239

a = a0e
−
(

c1+c2κ4

2

)
T1

(19)240

Further, the frequency shift can be obtained by substi-241

tuting Eq. (19) into Eq. (18) as follows.242

∂β

∂T1
= −3

8
k3ω

−1a20e
−(c1+c2κ

4)T1
243

β =
3

8

k3ω
−1a20

(c1 + c2κ4)
e−(c1+c2κ

4)T1 + β0 (20)244

Further, the initial condition has been assumed as at245

T1 = 0, β = 0 and so, β0 = − 3
8

k3ω
−1a2

0

(c1+c2κ4) . The shift in246

frequency can be determined as247

β =
3

8

k3ω
−1a20

(c1 + c2κ4)
e−(c1+c2κ

4)T1 − 3

8

k3ω
−1a20

(c1 + c2κ4)
248

β = −3

8

k3ω
−1a20

(c1 + c2κ4)

(
1− e−(c1+c2κ

4)T1

)
(21)249

The wave solution can be written by substituting ampli-250

tude Eq. (19) and frequency shift Eq. (21) into Eq. (12)251

as252

w0 =
a0
2

e
−
(

c1+c2κ4

2

)
T1

253

e
−i 38

k3ω−1a2
0

(c1+c2κ4)T1

(
1−e

−(c1+c2κ4)T1

)
T1

ei(κx−ωT0) + cc
(22)

254

Further, substituting T0 = t and T1 = ϵt,255

w0 =
a0
2

e
−
(

c1+c2κ4

2

)
ϵt

256

e
−i 38

k3ω−1a2
0

(c1+c2κ4)t

(
1−e

−(c1+c2κ4)ϵt
)
t
ei(κx−ωt) + cc (23)257

The frequency shift can be written as258

ωs = ω +
3

8

k3ω
−1a20

(c1 + c2κ4) t

(
1− e−(c1+c2κ

4)ϵt
)

(24)259

To further clarify the frequency shift derived in Eq. (24),260

it is important to highlight that the system’s nonlinear-261

ity leads to an amplitude-dependent frequency shift. Ini-262

tially, when t is small and the amplitude is large, the263

nonlinearity induces a substantial frequency shift. As264

time progresses and damping reduces the amplitude, the265

corresponding frequency shift diminishes. This behavior266

illustrates the direct correlation between the wave am-267

plitude and the magnitude of the frequency shift in non-268

linear systems. However, in the case of an undamped269

system, substituting c1 = c2 = 0 in Eq. (15) following270

frequency shift and wave solution can be obtained.271

ωs = ω +
3k3a

2
0

8ω
ϵ (25)272

w0 = a0e
−
(

3k3a2
0

8ω

)
ϵt
ei(κx−ωt) + cc (26)273

The amplitude-dependant dispersion relation of an un-274

damped beam supported by nonlinear springs can be ob-275

tained by squaring Eq. (25), substituting κ4 + k1 at ω2
276

and neglecting terms of ϵ2 as277

ω2
s = κ4 + k1 + ϵ

3k3a
2
0

4
(27)278

Note that, the strength of cubic nonlinearity is generally279

considered by factor Π =
ϵk3a

2
0

k1
. The method of mul-280

tiple scales is applicable in the conservative bounds as281

|Π| < 0.1 [41]. Moreover, when the system is damped,282

the amplitude is always decreasing and is independent283

of the strength of cubic nonlinearity as time progresses284

which makes the system always stable [19].285

C. Finite element modelling286

A finite element formulation of the Euler-Bernoulli287

beam on nonlinear elastic springs has been developed for288

numerical validation. A governing strong form equation289

for a representative unit cell is derived as Eq. (4). Let,290

w(x, t) = ψ(x)q(t), where, q(t) = {ui, u′i, uj , u′j}T ; ui291

and u′i are displacement and slope at ith node at time292

t. Further ψ(x) is shape function defined by Hermite293

polynomial as ψ(x) = [ψ1 ψ2 ψ3 ψ4] where,294

ψ1(x) =
1

l3
(
2x3 − 3x2l + l3

)
295

ψ2(x) =
1

l3
(
x3l − 2x2l2 + xl3

)
296

ψ3(x) =
1

l3
(
−2x3 + 3x2l

)
297

ψ4(x) =
1

l3
(
x3l − x2l2

)
(28)298
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Employing the Galerkin method, the weak form of a299

strong form equation given in Eq. (4) can be derived300

as [40]301

[∫ l

0

ψTψdx

]
︸ ︷︷ ︸

M

q̈(t) +

[
ω2
n

l3

∫ l

0

d2ψ

dx2

T
d2ψ

dx2
dx

]
︸ ︷︷ ︸

K

q(t) + [k1ψ(0)]︸ ︷︷ ︸
L

q(t)302

+

[
ϵc1

∫ l

0

ψTψdx+ ϵc2

∫ l

0

d2ψ

dx2

T
d2ψ

dx2
dx

]
︸ ︷︷ ︸

C

q̇(t) +
[
ϵk3ψ(0)

3
]︸ ︷︷ ︸

N

q(t)3 = 0 (29)303

The typical element mass matrix (M), stiffness matrix304

(K), mass and stiffness proportional Rayleigh damping305

matrix (C) [57], and the linear and nonlinear spring stiff-306

ness matrices (L and N) for a single unit have been de-307

rived as follows.308

M =
1

420

 156 22 l 54 −13 l
22 l 4 l2 13 l −3 l2

54 13 l 156 −22 l
−13 l −3 l2 −22 l 4 l2

309

K = ω2
n

 12 6 l −12 6 l
6 l 4 l2 −6 l 2 l2

−12 −6 l 12 −6 l
6 l 2 l2 −6 l 4 l2

 (30)310

311

C =
c1
420

 156 22 l 54 −13 l
22 l 4 l2 13 l −3 l2

54 13 l 156 −22 l
−13 l −3 l2 −22 l 4 l2

312

+
c2
l3

 12 6 l −12 6 l
6 l 4 l2 −6 l 2 l2

−12 −6 l 12 −6 l
6 l 2 l2 −6 l 4 l2

 (31)313

314

L =

 k1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ; N =

 k3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (32)315

Further, the global matrices ([]g) have been obtained and316

the global equation of motion can be written as follows.317

Mg v̈ +Kgv + Lgv + ϵ
(
Cg v̇ +Ngv

3
)
= 0 (33)318

where v is the global displacement vector.319320

III. RESULTS AND DISCUSSION321

In this section, the proposed theory for nonlinear wave322

propagation has been validated with the numerical solu-323

tion. Further, this section discusses the wave dispersion324

phenomena within both undamped and damped Euler-325

Bernoulli beams supported by cubic nonlinearities, ex-326

ploring both hardening and softening nonlinear behav-327

iors. Additionally, it thoroughly examines the impact328

of viscous damping and strain rate damping on damped329

beams.330331332333334335336337

A. Numerical validation338

The nonlinear dispersion relation can be derived us-339

ing two approaches. The first is the free wave approach,340

where the propagation constant (κ) is fixed by apply-341

ing harmonic initial condition, and the corresponding342

frequency (ω) is determined. Alternatively, the driven343

wave approach fixes the frequency (ω) through harmonic344

boundary conditions, leading to the determination of345

the propagation constant. However, in dispersive me-346

dia, the boundary complexity decreases the amplitude of347

harmonic boundary conditions in the far field, impact-348

ing the amplitude-dependent dispersion. Consequently,349

for the nonlinear dispersion relation of infinite continuous350

beams, the free wave approach is preferable for numerical351

validation.352

The MATLAB ODE45 function has been used to ob-353

tain the solution of the Eq. (33). For this, a very long354

beam has been simulated for a long time to get accu-355

rate fast Fourier transform (FFT) results but not so long356

time that the boundary reflections affect the solution.357

The FFT is calculated in both space and time to get358

wavenumber (κ) as well as frequency (ω). According to359

the free-wave approach, the frequency shift is obtained by360

fixing the wavenumber by imposing the initial condition361

as w(x, 0) = A cos(κx), w′(x, 0) = −Aκ sin(κx).362

For illustration purposes, the wave number κ = 0.5363

and the amplitude A = 1 are applied in the initial condi-364

tion to the beam shown in Fig. 2(a). Furthermore, the365

stiffness of the elastic springs is taken as k1 = 1, k3 = −1366

and ϵ = 1 for the undamped system. In Fig. 2(b), the367

displacement profile of the center portion of the beam368
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x = 0 1 2 1024

(a)

(b)

(c) (d)

(e) (f)

FIG. 2. (a) The long Euler Bernoulli beam with c1 = c2 = 0, k3 = −1, k1 = 1, A = 1, ϵ = 0.1, (b) Displacement contour of
the middle portion of the beam shown by the dashed box, (c) Displacement versus distance plot at different instances of time
shown in horizontal dashed lines with orange shades in (b), (d) Displacement versus time plot at different locations shown in
vertical dashed lines with violet shades in (b), (e) FFT plots corresponding to displacement profiles shown in (c), (f) FFT plots
corresponding to time histories shown in (d).

with respect to space and time is demonstrated. Fur-369

ther, the beam displacement with respect to space at370

different times as shown by the horizontal dashed line in371

Fig. 2(b) are plotted in Fig. 2(c), and its FFT plots372
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(a) (b)

(c) (d)

FIG. 3. (a) Displacement contour of the Euler Bernoulli beam with c1 = c2 = 0.05, k3 = 1, k1 = 1, A = 0.1, ϵ = 1; (b)
Displacement versus time plot at different locations shown in vertical dashed lines with violet shades in (a) where the solid
lines depict numerical solution and the dashed lines depict analytical solution, moreover the magnified plots are shown inside
to showcase the better validation in the initial time window and degraded validation in later time window; (c) Displacement
versus distance plot at different instances of time shown in horizontal dashed lines with orange shades in (a); (d) FFT plots
corresponding to displacement profiles shown in (c).

are plotted in Fig. 2(e) which shows peak amplitude at373

the wavenumber (κ = 0.5) applied in the initial condi-374

tion. Furthermore, the beam displacement with respect375

to time at different spaces located by vertical dashed lines376

as shown in Fig. 2(b) are plotted in Fig. 2(d), and its377

FFT can be observed in Fig. 2(f). The peak amplitude378

frequency in Fig. 2(f) matches exactly with the analyt-379

ically obtained nonlinear frequency shown with a solid380

blue line. As the nonlinearity is soft the frequency shift381

is negative which can be seen in the magnified plot in Fig.382

2(f), where the frequency of the linear system is shown by383

a black dashed line. This validates the proposed theory384

of the free wave approach for an undamped system.385

The damped system has been validated further in Fig.386

3 with the following parameters: spring stiffness with387

hard nonlinearity as k1 = 1, k3 = 1, the damping factor388

c1 = c2 = 1 and ϵ = 1. In addition, the initial condition389

is kept similar to the undamped case as the wave num-390

ber κ = 0.5 and the amplitude A = 1. The displacement391

profile of the beam in space-time is illustrated in Fig.392

3(a) which shows the decreases in amplitude as time pro-393

gresses. However, the wavelength is constant as shown in394

Fig. 3(c) in which the displacement is plotted at differ-395

ent times shown by horizontal dashed lines in Fig. 3(a).396

Further, its FFT is plotted in Fig. 3(d), which shows the397

consistent wavenumber at different times. Furthermore,398

the time histories at different locations shown by verti-399

cal dashed lines in Fig. 3(a) are plotted in Fig. 3(b).400

The decrease in amplitude due to damping reduces the401

frequency shift with time, therefore instead of FFT of402

time histories for validation, the analytical displacement403

time histories are plotted with dashed lines to validate404

the proposed theory for the damped system. In magni-405

fied subplots of Fig. 3(b), the analytical and numerical406

solution matches exactly in the initial phase (Fig. 3(b1))407

however, they deviate in long time as shown in Fig. 3(b2)408

as the analytical solution is valid till time inversely pro-409

portional to the scaling factor (ϵ) [16].410
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(a) (b)

(c) (d) (e)

(f) (g) (h)

k3 = -1 k3 = 1k3 = 0

FIG. 4. (a) Dispersion relation plot for undamped system
with c1 = c2 = 0, k1 = 1 and nonlinear stiffness parameter
k3 = −1, 0 and 1; (b) Phase portrait for propagation con-
stant κ = 0.5; (c) displacement profile for κ = 0.5, k3 = −1;
(d) displacement profile for κ = 0.5, k3 = 0;(e) displacement
profile for κ = 0.5, k3 = 1; (f) Displacement time history at
middle node of the beam with κ = 0.5, k3 = −1; (g) Dis-
placement time history at the middle node of the beam with
κ = 0.5, k3 = 0; (h) Displacement time history at the middle
node of the beam with κ = 0.5, k3 = 1.

B. Undamped system411

This section presents an analysis of the dispersion re-412

lation of the nonlinear undamped system based on the413

proposed analytical plane wave solution. Initially, the414

influence of soft and hard nonlinearity on wave disper-415

sion is investigated, as illustrated in Fig. 4, considering416

nonlinear spring stiffness values of k3 = −1, 0, and 1. An417

amplitude of A = 1 and a scaling parameter of ϵ = 1 have418

been assumed. In Fig. 4(a), the dispersion plot is gener-419

ated by varying the propagation constant (κ) from 0 to420

π to obtain the frequency ωs using Eq. (25). As the fre-421

quency shift is inversely proportional to the frequency, It422

can be noticed that frequency shift is higher at low prop-423

agation constants and it diminishes at higher wavenum-424

bers. Subsequently, in Fig. 4(c-e), we display the dis-425

placement contours for the free vibration of the beam for426

κ = 0.5. It is noteworthy that while the wave number427

remains consistent across all three figures, the temporal428

frequency increases as the nonlinear spring stiffness esca-429

lates. Similarly, in Fig. 4(f-h), we plot the response of the430

midpoint of the beam. Additionally, the corresponding431

phase portrait is depicted in Fig. 4(b), clearly illustrat-432

ing the positive and negative shifts in frequency for the433

hardening and softening systems, respectively, from the434

linear dispersion.435

κ = 0.25 κ = 1.75κ = 1.00

k3 = 1.0

(c) (d) (e)

(f) (g) (h)

(a) (b)

FIG. 5. (a) Dispersion relation plot for the undamped sys-
tem with c1 = c2 = 0, k1 = 1, k3 = 1; (b) Phase portrait for
propagation constant κ = 0.25, 1.00 and 1.75; (c) displace-
ment profile for κ = 0.25, k3 = 1; (d) displacement profile for
κ = 1.00, k3 = 1;(e) displacement profile for κ = 1.75, k3 = 1;
(f) Displacement time history at middle node of the beam
with κ = 0.25, k3 = 1; (g) Displacement time history at
middle node of the beam with κ = 1.00, k3 = 10; (h) Dis-
placement time history at middle node of the beam with
κ = 1.75, k3 = 1.

Additionally, to analyze the impact of propagation436

constant, three different propagation constants: κ =437

0.25, 1, and 2 have been considered, for a nonlinear sys-438

tem with hardening stiffness k3 = 1, as depicted in the439

dispersion plot in Fig. 5(a). Furthermore, the displace-440

ment profile of free vibration is illustrated using contour441

plots in Fig. 5(c-e). The temporal response of the mid-442

point of the beam is shown in Fig. 5(f-h), accompa-443

nied by its corresponding phase portrait in Fig. 5(b).444

It is evident from these analyses that as the propaga-445

tion constant increases, the corresponding frequency also446

increases, with the increment being minimal until prop-447

agation constant κ = 1.448

C. Damped system449

The effect of viscous damping and strain rate damping450

along with system nonlinearity on wave dispersion has451

been discussed in this section. The following three types452

of systems have been discussed.453

1. Viscous damping c1 = 0.25 and Strain rate damp-454

ing c2 = 0455

2. Viscous damping c1 = 0 and Strain rate damping456

c2 = 0.25457
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-1

0

1

Time Time

Time

(d) (e) (f)

Time

Time

Time

Time

Time

Time

(a) (b) (c)

FIG. 6. Dispersion relation plots at different time instances
are illustrated for hardening system with blue shades and
softening system with shades of pink for (a) only viscous
damping c1 = 0.25 and c2 = 0, (b) only strain rate damp-
ing c1 = 0 and c2 = 0.25 and (c) viscous damping and strain
rate damping c1 = 0.25 and c2 = 0.25; Frequency shift ver-
sus propagation constant (κ) plots at different time instances
are illustrated for hardening system with blue shades and
softening system with shades of pink for (d) only viscous
damping c1 = 0.25 and c2 = 0, (e) only strain rate damp-
ing c1 = 0 and c2 = 0.25 and (f) viscous damping and strain
rate damping c1 = 0.25 and c2 = 0.25

3. Viscous damping c1 = 0.25 and Strain rate damp-458

ing c2 = 0.25459

The dispersion relation plots of frequency (ω) versus460

propagation constant (κ) are presented in Fig. 6(a, b,461

and c) for the aforementioned configurations, represent-462

ing only viscous damping, only strain rate damping, and463

combined viscous and strain rate damping, respectively.464

Considering the time-dependent nature of frequency shift465

corresponding to propagation constants, the dispersion is466

visualized at multiple time instances ranging from 0 to467

100 seconds for both softening and hardening systems.468

The evolution of these plots reveals a transition from un-469

damped to linear system behavior over time.470

Furthermore, the plots of frequency shift (∆ω) ver-471

sus propagation constant (κ) in Fig. 6(d-f) for all three472

damping configurations highlight a decreasing trend in473

frequency shift with increasing time. Notably, for sys-474

tems with only strain rate damping (c2), the damping475

effect is proportional to κ4, resulting in a more rapid de-476

cay for higher wavenumbers. Conversely, systems with477

viscous damping (c1) exhibit a damping effect indepen-478

dent of wavenumber. In damped systems, nonlinear ef-479

fects tend to diminish with decaying amplitudes.480

First, we investigate the influence of viscous damping481

on the behavior of a system under varying propagation482

constants. Specifically, we focus on three distinct prop-483

agation constants, namely κ = 0.50, 1.00, and 1.50, ex-484

amining the dynamics of frequency shift over time. This485

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

k3 = -1 k3 = 1k3 = 0

a0(t)

FIG. 7. Damped nonlinear system with only viscous damp-
ing c1 = 0.25; c2 = 0 and k1 = 1. (a), (b) and (c) shows
a frequency shift (∆ω) versus time (t) propagation constant
κ = 0.50, 1.00 and 1.50 respectively; (d), (e) and (f) show dis-
placement (w0) versus time (t) at the middle node of beam
for propagation constant κ = 0.50, 1.00 and 1.50 respectively
and yellow dashed line is for amplitude envelope; (g), (h) and
(i) shows phase portraits for middle node of beam for propa-
gation constant κ = 0.50, 1.00 and 1.50 respectively.

analysis is presented through plots in Fig. 7 (a, b, and486

c), where differentiating characteristics of damping ef-487

fects are delineated for hardening (magenta line), soften-488

ing (blue line), and linear (black line) systems. Our find-489

ings reveal a convergence of frequency shifts to zero over490

time across all propagation constants, indicating consis-491

tent trends irrespective of the system’s nonlinearity. Fur-492

thermore, the temporal evolution of displacement at the493

beam’s middle node is depicted in Fig. 7 (d, e, and f)494

for κ = 0.50, 1.00, and 1.50, respectively. In addition495

to these plots, the amplitude modulation, represented by496

the yellow dashed line, remains uniform across different497

propagation constants and types of nonlinearity. Addi-498

tionally, phase portraits are presented in Fig. 7 (g, h,499

and i) for the same set of propagation constants. No-500

tably, higher propagation constants correspond to higher501

velocities, indicative of increased frequencies. Moreover,502

the phase portraits elucidate distinct shifts from linear503

frequency: positive for hardening and negative for soft-504

ening nonlinear systems, underscoring characteristic non-505

linear behaviors Additionally, we explore the impact of506

strain rate damping on systems characterized by diverse507

propagation constants. The damping factor correspond-508

ing to strain rate damping is proportional to κ4, so the509

amplitude modulation varies with the propagation con-510

stant. The temporal evolution of frequency shift is de-511

picted in Fig. 8(a, b, and c) for propagation constants512

κ = 0.5, 1.00, and 1.50, respectively. Notably, the rate513
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k3 = -1 k3 = 1k3 = 0

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

a0(t)

FIG. 8. Damped nonlinear system with only viscous damp-
ing c1 = 0; c2 = 0.25 and k1 = 1. (a), (b) and (c) shows
a frequency shift (∆ω) versus time (t) propagation constant
κ = 0.50, 1.00 and 1.50 respectively; (d), (e) and (f) show dis-
placement (w0) versus time (t) at the middle node of beam
for propagation constant κ = 0.50, 1.00 and 1.50 respectively
and the yellow dashed line is for amplitude envelope; (g), (h)
and (i) shows phase portraits for the middle node of beam for
propagation constant κ = 0.50, 1.00 and 1.50 respectively.

of decrease in frequency shift varies significantly across514

different propagation constants, being notably slower for515

lower values of κ and more rapid for higher values. Upon516

examining the amplitude modulation for all three prop-517

agation constants in Fig. 8(d, e, and f), it becomes518

apparent that the decay progresses at a relatively slow519

pace when κ = 0.50, whereas it accelerates swiftly when520

κ = 1.50. Similarly, the phase portraits presented in Fig.521

8(g, h, and i) for κ = 0.5, 1.00, and 1.50 reinforce these522

observations, providing further clarity on the relationship523

between propagation constants and damping effects.524

Furthermore, we examine the combined effect of both525

types of damping, as illustrated in Fig. 9. The plots526

depicting frequency shift over time are presented in Fig.527

9(a, b, and c) for propagation constants κ = 0.5, 1.00,528

and 1.50, respectively. Notably, the frequency shift grad-529

ually diminishes over time, converging towards the fre-530

quency of a linear system as time progresses. Addition-531

ally, the amplitude modulation shown in Fig. 9(d, e, and532

f) elucidates the increase in decay rate with propagation533

constant. In the lower range of propagation constants,534

amplitude decay is primarily attributed to viscous damp-535

ing, whereas in the higher range, it is predominantly due536

to strain rate damping. To gain a clearer understand-537

ing, phase portraits are depicted in Fig. 8(g, h, and i)538

for κ = 0.5, 1.00, and 1.50, respectively, reinforcing these539

observations.540

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

k3 = -1 k3 = 1k3 = 0

a0(t)

FIG. 9. Damped nonlinear system with only viscous and
strain rate damping combine c1 = 0.25; c2 = 0.25 and
k1 = 1. (a), (b) and (c) shows a frequency shift (∆ω) ver-
sus time (t) propagation constant κ = 0.50, 1.00 and 1.50 re-
spectively; (d), (e) and (f) show displacement (w0) versus
time (t) at the middle node of beam for propagation con-
stant κ = 0.50, 1.00 and 1.50 respectively and yellow dashed
line is for amplitude envelope; (g), (h) and (i) shows phase
portraits for middle node of beam for propagation constant
κ = 0.50, 1.00 and 1.50 respectively.

IV. SUMMARY AND CONCLUSION541

In this paper, the analytical closed-form dispersion re-542

lation equation for a damped slender elastic beam peri-543

odically supported by cubic nonlinear springs has been544

derived. To derive the nonlinear dispersion relation, the545

method of multiple scales is employed after introducing546

a scaling parameter, ϵ, to account for slow time scales.547

Through this approach, the governing partial differential548

equation is expanded and solved iteratively, leading to549

expressions for complex amplitudes and frequency shifts.550

The amplitude modulation and frequency shift equations551

are derived as functions of damping coefficients and am-552

plitude of the initial plane wave. The proposed theory553

for nonlinear wave propagation was validated numeri-554

cally through finite element formulation. Numerical sim-555

ulations were carried out using the MATLAB ODE45556

function. The results of numerical and analytical solu-557

tions of the undamped and damped systems show con-558

sistency which affirms the validity of the developed ana-559

lytical closed-form solutions.560

An extensive investigation into wave dispersion in non-561

linear undamped systems was carried out using an ana-562

lytical plane wave solution. The key findings are as fol-563

lows:564

• For a given propagation constant, there will be an565



11

amplitude-dependent shift in frequency. The posi-566

tive shift is observed for hardening springs and neg-567

ative for softening springs.568

• Since the frequency shift is inversely proportional569

to the frequency of the corresponding linear sys-570

tem, nonlinearity has a greater impact at low prop-571

agation constants or low frequencies and it reduces572

with increasing propagation constants or frequen-573

cies.574

Additionally, the study thoroughly investigates the ef-575

fects of viscous damping and strain rate damping, both576

individually and in combination. Through the analysis577

of amplitude modulation and phase portraits, distinct578

behaviors were elucidated across systems with different579

propagation constants and damping effects. The key580

findings are summarized as follows:581

• Over time, the amplitude-dependent frequency582

shift decreases and eventually reaches zero, regard-583

less of propagation constants or damping type.584

Hence, the influence of nonlinearity diminishes over585

time in a damped system.586

• Analysis of viscous damping revealed a consistent587

decay in frequency shifts over time across all prop-588

agation constants, while amplitude modulation re-589

mained uniform.590

• The rate at which the amplitude decays in a sys-591

tem with strain rate damping is directly propor-592

tional to the fourth power of propagation constant.593

This leads to a relatively sluggish convergence of594

the frequency shift to zero at low propagation con-595

stants, but quite more rapid convergence at higher596

propagation constants.597

• Furthermore, the combined effect of both types of598

damping illustrated a gradual convergence of fre-599

quency towards that of a linear system as time pro-600

gressed. Amplitude decay was primarily attributed601

to viscous damping at lower propagation constants602

and strain rate damping at higher propagation con-603

stants.604

This study has the following major contributions:605

• A closed-form equation for amplitude-dependent606

dispersion relation has been derived for continu-607

ous systems, providing a valuable analytical tool608

for further research in this domain.609

• Furthermore, the incorporation of damping effects610

into the analysis of nonlinear dispersion offers in-611

sights into emulating real-world behavior, enhanc-612

ing the applicability and relevance of the findings.613
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Appendix A: Multiple spatial scales approach619

The nonlinear partial differential equation, as shown in620

Eq. (4), involves the independent variables x and t, which621

correspond to the spatial and temporal dimensions, re-622

spectively. By employing a multiscale method, additional623

scales are introduced to account for long spatial scales,624

defined as X1 = ϵx, which augment the original spatial625

scale X0 = x. Consequently, the spatial derivatives can626

be expressed as627

∂

∂x
=

∂

∂X0
+ ϵ

∂

∂X1
(A1)628

Further, the solution can be obtained as629

w(x, t, ϵ) =

1∑
n=0

ϵnwn (X0, X1, t) +O(ϵ) (A2)630

By substituting the solution given in Eq. (A2) into the631

partial differential equation given in Eq. (4) and em-632

ploying the spatial derivatives provided in Eq. (A1), the633

governing partial differential equation can be expressed634

through the consolidation of terms with similar powers635

of ϵ as.636

R0 +R1ϵ+O(ϵ2) = 0 (A3)637

where638

R0 :
∂4w0

∂X0
4 +

∂2w0

∂t2
+ k1w0 = 0 (A4)639

R1 :
∂4w1

∂X0
4 + 4

∂4w0

∂X1∂X0
3 +

∂2w1

∂t2
+ k1w1640

+ c1
∂w0

∂t
+ c2

∂5w0

∂t∂X0
4 + k3w

3
0 = 0 (A5)641

The solutions w0, and w1 can be obtained by solving642

equations R0 = 0 and R1 = 0 in progression.643

In the case of flexural wave solution in infinite struc-644

ture, the boundary complexities can be ignored and the645

plane wave solution can be assumed for the equation646

R0 = 0.647

w0 = A (X1) e
i(κX0−ωt) + Ā (X1) e

−i(κX0−ωt) (A6)648

Substituting Eq. (A6) in Eq. (A4) the dispersion relation649

for the linear system can be derived as650

κ4 − ω2 + k1 = 0 (A7)651
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Further, substituting Eq. (A6) in Eq. (A5), the following652

equation can be obtained653

∂2w1

∂t2
+
∂4w1

∂X0
4 + k1w1654

=

(
4iκ3

∂A

∂X1
+ ic1ωA+ ic2κ

4ωA− 3 k3A
2Ā

)
ei(κX0−ωt)

655

− k3A
3ei(3κX0−3ωt) + cc (A8)656

The particular solution of Eq. (A8) contains secular657

terms which lead to nonuniform expansion in scaled658

time. Since the linear operator
(

∂2

∂t2 + ∂4

∂X0
4 + k1

)
is self-659

adjoint, as demonstrated in the appendix A, the solv-660

ability condition for eliminating secular terms can be de-661

rived. This condition is obtained by equating the forc-662

ing terms responsible for generating the secular terms663

to zero, which leads to the following partial differential664

equation governing the amplitude A.665

4iκ3
∂A

∂X1
+ ic1ωA+ ic2κ

4ωA− 3 k3A
2Ā = 0666

i
∂A

∂X1
= −iA

(
c1 + c2κ

4

4κ3

)
ω +

3

4κ3
k3A

2Ā (A9)667

The solution of A in polar form can be assumed as668

A = 1
2a(X1)e

iβ(X1),Ā = 1
2a(X1)e

−iβ(X1) and substitut-669

ing them into Eq. A9 the following equations can be670

obtained.671

i
1

2

(
eiβ

∂a

∂X1
+ i eiβ a

∂β

∂X1

)
672

= −i

(
c1 + c2κ

4

4κ3

)
ω
a

2
eiβ +

3

4κ3
k3e

iβ a
3

8
(A10)673

Further separating the real and imaginary parts following674

equations can be obtained.675

∂a

∂X1
= −

(
c1 + c2κ

4

4κ3

)
ωa (A11)676

∂β

∂X1
= − 3

16κ3
k3a

2 (A12)677

The amplitude modulation can be obtained by solving678

Eq. (A11) as679

a = a0e
−
(

c1+c2κ4

2κ3

)
ωX1

(A13)680

Further, the wave number shift can be obtained by sub-681

stituting Eq. (A13) into Eq. (A12) as follows.682

∂β

∂X1
= − 3

16κ3
k3a

2
0e

−
(

c1+c2κ4

2κ3

)
ωX1

683

β =
3

8

k3a
2
0ω

−1

(c1 + c2κ4)
e
−
(

c1+c2κ4

2κ3

)
ωX1

+ β0 (A14)684

Further, the initial condition has been assumed as at685

X1 = 0, β = 0 and so, β0 = − 3
8

k3a
2
0ω

−1

(c1+c2κ4) . The shift in686

frequency can be determined as687

β =
3

8

k3a
2
0ω

−1

(c1 + c2κ4)
e
−
(

c1+c2κ4

2κ3

)
ωX1 − 3

8

k3a
2
0ω

−1

(c1 + c2κ4)
688

β = −3

8

k3ω
−1a20

(c1 + c2κ4)

(
1− e

−
(

c1+c2κ4

2κ3

)
ωX1

)
689

β = −3

8

k3ω
−1a20

(c1 + c2κ4)

(
1− e

−
(

c1+c2κ4

2κ3

)
ωϵx

)
(A15)

690

Using the Eq. (A15), the shift in wavenumber can be de-691

termined. However, to obtain the frequency shift the con-692

cept of group velocity in amplitude modulation equation693

has been used. Further, from differentiating the Eq. (A7)694

with propagation constant κ the group velocity (vg = dω
dκ )695

can be obtained as696

4κ3 − 2ω
dω

dκ
= 0697

vg =
dω

dκ
=

2κ3

ω
(A16)698

Now, by substituting Eq. (A16) into Eq. (A13) and Eq.699

(A15), and incorporating vg = x/t the following equation700

can be determined701

a = a0e
−(c1+c2κ

4)ϵt (A17)702

β = −3

8

k3ω
−1a20

(c1 + c2κ4)

(
1− e−(c1+c2κ

4)ϵt
)

(A18)703

Equations A17 and A18 match exactly with the solutions704

obtained using temporal multiscales in Eqs. 19 and 21.705

Thus, it can concluded that both temporal and spatial706

methods of multiple scales can be used to determine non-707

linear frequency shifts.708

Appendix B: Proof of self ad-joint operator709

To prove the left-hand side of Eq. (14)710 (
∂2

∂T0
2 + ∂4

∂x4 + k1

)
self adjoined, first the variable711

separation method has been used to get two separate712

ordinary differential equations (ODE) as follows. Let,713

the solution w(x, T0) = f(x)g(T0)714 (
∂2

∂T0
2 +

∂4

∂x4
+ k1

)
w(x, T0) = 0715 (

∂2

∂T0
2 +

∂4

∂x4
+ k1

)
f(x)g(T0) = 0716

f(x)
d2g(T0)

dT0
2 +G(T0)

d4f(x)

dx4
+ k1f(x)g(T0) = 0 (B1)717
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dividing whole Eq. (B1) with f(x)g(T0) as718

1

g(T0)

d2g(T0)

dT0
2 +

1

f(x)

d4f(x)

dx4
+ k1 = 0 (B2)719

Further,720

1

g(T0)

d2g(T0)

dT0
2 = − 1

f(x)

d4f(x)

dx4
− k1 = λ (B3)721

following this two separate ODEs can be written as722

d2g(T0)

dT0
2 − λg(T0) = 0 (B4)723

d4f(x)

dx4
+ (k1 + λ) f(x) = 0 (B5)724

The eigenvalue problem to solve is Eq. (B5) and the725

Linear operator in is
(
L = d4

dx4

)
. Operator L can be726

called self ad-joint if inner products ⟨Lu, v⟩ = ⟨u, Lv⟩.727

⟨Lu, v⟩ =
∫ b

a

(
d4u(x)

dx4

)
v(x)dx728

=

[
d3u(x)

dx3
v(x)

]b
a

−
∫ b

a

d3u(x)

dx3
dv(x)

dx
dx (B6)729

=

[
d3u(x)

dx3
v(x)

]b
a

+

[
d2u(x)

dx2
dv(x)

dx

]b
a

730

−
∫ b

a

d2u(x)

dx2
d2v(x)

dx2
dx (B7)731

Further,732

⟨u, Lv⟩ =
∫ b

a

u(x)

(
d4v(x)

dx4

)
dx (B8)733

=

[
d3v(x)

dx3
u(x)

]b
a

−
∫ b

a

d3v(x)

dx3
du(x)

dx
dx (B9)734

=

[
d3v(x)

dx3
u(x)

]b
a

+

[
d2v(x)

dx2
du(x)

dx

]b
a

735

−
∫ b

a

d2v(x)

dx2
d2u(x)

dx2
dx (B10)736

After applying appropriate boundary conditions the Eq.737

(B7) and Eq. (B10) can be proved to be the same. For738

brevity in the case of the simply supported beam, the739

boundary conditions u(a) = 0, v(a) = 0, u(b) = 0, and740

v(b) = 0 can be substituted in the Eq. (B7) and Eq.741

(B10). The inner product is:742

⟨Lu, v⟩ = ⟨u, Lv⟩ = −
∫ b

a

d2u(x)

dx2
d2v(x)

dx2
dx (B11)743

Hence, It can be said that the operator744 (
∂2

∂T0
2 + ∂4

∂x4 + k1

)
is self adjoined.745
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