# Wave dispersion in a damped beam supported by cubic nonlinear springs: A multiscale freewave approach

Abhigna Bhatt\*

Department of Civil Engineering, Indian Institute of Technology Delhi, India

Kamal K. Bera<sup>†</sup>

Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, India

Arnab Banerjee<sup>‡</sup>

Department of Civil Engineering, Indian Institute of Technology Delhi, India (Dated: May 6, 2025)

Researchers are drawn to exploring wave dispersion in nonlinear systems because of the amplitude-dependent tunability of the bandgap. This paper investigates the amplitude-dependent wave dispersion in continuous beam structures supported periodically by nonlinear springs. Additionally, it examines the influence of inherent beam damping on wave dispersion. The analytical framework consists of homogenization of the unit cell and the method of multiple scales with two distinct time scales to derive the wave dispersion equation. The proposed analytical approach for nonlinear wave propagation is validated through numerical finite element simulations. It is observed that the frequency shift is positive for hardening and negative for softening supports. Following this, the dispersion shift over time in the damped systems is examined by considering viscous and strain rate-dependent damping. The sensitivity of strain rate damping to propagation constant and the independence of viscous damping from propagation constant are thoroughly investigated. In a damped system, the frequency shift diminishes over time as the amplitude decreases reducing the effect of nonlinearity. This study opens up avenues for controlling or filtering vibrations through the tunable bandgap of continuous nonlinear metamaterials.

Keywords: Homogenisation, Method of multiple scales, Frequency shift, Amplitude modulation, Amplitude dependant dispersion

73

#### I. INTRODUCTION

Over the past decade, wave dispersion in linear meta-50 materials has garnered considerable attention from re-51 searchers due to its complex dispersion patterns, filtering 52 capabilities, and the emergence of frequency bandgaps. 53 The presence of nonlinearities within these systems has 54 further piqued the interest of the engineering community, revealing fascinating phenomena such as amplitude-56 dependent dispersion and alterations in group velocity 57 with weak nonlinear effects, as well as the propagation of 58 solitary waves like solitons under strong nonlinear conditions. This exploration of wave propagation in nonlinear 60 metamaterial has led to the proposal of various engineering applications, including diodes [1, 2], switches [3], and 62 filters [4].

Several recent studies have analyzed amplitude- <sup>64</sup> dependent dispersion in discrete nondispersive systems <sup>65</sup> such as monoatomic and diatomic chains with cubic non- <sup>66</sup> linearity using perturbation method [5], nonlinear tri- <sup>67</sup> atomic metamaterial [6, 7], monoatomic chain with non- <sup>68</sup> linear embedded resonator [8], nonlinear monoatomic <sup>69</sup> chain with embedded resonator [9, 42], nonlinear ro- <sup>70</sup>

2

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

33

34

35

36

37

39

40

42

43

45

46

ton like chain[11] etc. Additionally. nonlinear behavior such as amplitude-induced bandgap[10, 12], selfswitching functionality [13], bridging coupling mechanism [14], band tunability [43] and nonreciprocity [44, 45] etc has been observed in variety of discrete systems. Different analytical methods such as Lindstedt-Poincaré perturbation technique, method of multiscale, harmonic balance method, method of averaging, Jacobi's elliptic balance method [60] etc [15, 16] have been used in deriving analytical solutions of the nonlinear dynamic systems in the past. However, the method of multiple scales is well suited for the damped system as it solves for amplitude modulation [17–20]. In the case of nonlinear continuous systems, researchers generally tackle finite systems and obtain frequency response function [21–28]. In nonlinear continuum elastic media with topological mechanics the method of multiple scales is widely used [58, 59]. In the case of continuous infinite structures, the nonlinear dispersion shift is obtained for a few systems such as a bar with periodically embedded resonators [29–31], beam with periodic resonators [32, 33] etc. The quasistatic wide bandgap can be induced by a beam on an elastic foundation for linear systems [35]. Additionally by incorporating nonlinear supports, the tunable quasistatic bandgap can be obtained [36]. This has motivated us to study the amplitude-dependent wave dispersion in infinite long periodically supported damped beams.

An infinite beam with damping and nonlinear supports has numerous practical applications. For instance,

 $<sup>^{*}</sup>$  Abhigna.Sandipkumar.Bhatt@civil.iitd.ac.in

 $<sup>^{\</sup>dagger}$ kamal@nitt.edu

<sup>&</sup>lt;sup>‡</sup> abanerjee@iitd.ac.in

railway tracks can be modeled as infinitely long Euler-<sup>133</sup> Bernoulli beams resting on nonlinear spring-dashpot systems, making the study of flexural wave propagation es-<sup>134</sup> sential for the analysis, design, and health monitoring of <sup>135</sup> railway infrastructure [46–48]. Additionally, functionally graded foams, which can be modeled as beams supported by nonlinear springs with damping [55], are widely used <sup>136</sup> in various fields. These include acoustic control [53], shock and energy absorption [49, 50], as well as appli-<sup>137</sup> cations in the automotive industry [51] and biomedical instruments [52]. Furthermore, beams on periodic elastic <sup>138</sup> foundations are key for achieving wider bandgap regions <sup>139</sup> and stronger attenuation capabilities [56], enhancing pas-<sup>140</sup> sive vibration control [54] and other advanced engineer-<sup>141</sup> ing solutions.

77

78

79

81

82

84

85

87

88

90

91

92

93

94

95

99

100 101

102

103

104

105

106

107

108

109

110

111

112

113

115

116

118

119

121

122

124

125

127

128

130

132

Historically, researchers have directed their attention<sup>143</sup> towards both nonlinear and linear wave propagation<sup>144</sup> within discrete metamaterials, while investigations into<sup>145</sup> wave propagation in continuous metamaterials have pri-<sup>146</sup> marily focused on linear systems. Concerning nonlinear continuous systems, researchers have primarily explored<sub>147</sub> frequency response functions within various finite systems, leaving a limited examination of wave propagation within continuous beam systems incorporating nonlinearity [34].

To address this gap, the study delves into the amplitude-dependent, time-varying dispersion relation of a damped beam supported by nonlinear springs. Specifi-150 cally, it explores the wave dispersion relation of a damped beam supported by periodic nonlinear structures, considering two types of damping—viscous and strain rate<sup>151</sup> damping—alongside both softening and hardening cubic<sub>152</sub> nonlinearity. Employing a multiscale method with two distinct time scales, the study analytically derives the wave dispersion equation. The accuracy of the analytical<sub>153</sub> solution is confirmed through comparison with numerical results. Initially, the paper discusses the frequency  ${\rm shift}_{154}$ in undamped systems affected by hardening and softening nonlinearities. Subsequently, it examines the disper-  $_{\scriptscriptstyle{156}}$ sion shift over time in damped systems, distinguishing, 157 between viscous and strain rate damping. The sensitivity of strain rate damping to propagation constants and  $_{158}$ the independence of viscous damping from propagation constants are thoroughly investigated. In summary, the paper extensively explores the amplitude-dependent nonlinear dispersion in infinitely long damped beams period-159 ically supported by nonlinear springs. These are vital for 160 modeling railway tracks, functionally graded foams, and 161 enhancing passive vibration control in various engineer-  $^{162}$ ing applications.

#### II. METHODOLOGY

166

167

Considering the flexural wave propagation in infinitely<sub>169</sub> long Euler Bernoulli beam supported by cubic nonlinear springs as depicted in Fig. 1(a), the following analytical<sub>170</sub> formulation is derived.

#### A. Governing equation

The governing equation of motion of the representative unit cell shown in Fig. 1(b) can be written as [37]:

$$\begin{split} &\frac{\partial^2}{\partial x^2} \left( E I \frac{\partial^2 w}{\partial x^2} + C_s \frac{\partial^3 w}{\partial x^2 \partial t} \right) + \rho A \frac{\partial^2 w}{\partial t^2} \\ &+ C_a \frac{\partial w}{\partial t} + \left( \tilde{k_1} w + \tilde{k_3} w^3 \right) \delta(x) = 0 \end{split} \tag{1}$$

where, EI = flexural rigidity,  $C_s$  = strain rate-dependent damping,  $C_a$  = velocity-dependent viscous damping,  $\rho$  = density, A = cross-section area,  $\tilde{k_1}$  and  $\tilde{k_3}$  are liner and nonlinear spring stiffness, w denotes transverse deflection, x = distance, and t represents time. Further, the Dirac delta function was approximated using a homogenization approach in which the stiffness of the spring was scaled down by the inverse of the length of the unit cell (1/l) as [38].

$$\frac{\partial^2}{\partial x^2} \left( EI \frac{\partial^2 w}{\partial x^2} + C_s \frac{\partial^3 w}{\partial x^2 \partial t} \right) + \rho A \frac{\partial^2 w}{\partial t^2} + C_a \frac{\partial w}{\partial t} + \frac{1}{I} \left( \tilde{k}_1 w + \tilde{k}_3 w^3 \right) = 0$$
(2)

Further, the governing equation can be written as

$$\frac{\partial^2 w}{\partial t^2} + \omega_n^2 \frac{\partial^4 w}{\partial x^4} + k_1 w + c_1 \frac{\partial w}{\partial t} + c_2 \frac{\partial^5 w}{\partial x^4 \partial t} + k_3 w^3 = 0$$
(3)

where, 
$$\omega_n^2 = \frac{EI}{\rho A}, c_1 = \frac{C_s}{\rho A}, c_2 = \frac{C_a}{\rho A}, k_1 = \frac{1}{\rho A l} \tilde{k_1}$$
 and  $k_3 = \frac{1}{\rho A l} \tilde{k_3}$ 

# B. Multiple scales Method

The nonlinear governing equation given in Eq. (3) has been solved using the method of multiple scales by introducing the scaling parameter  $\epsilon$  with damping and nonlinear terms as:

$$\frac{\partial^2 w}{\partial t^2} + \omega_n^2 \frac{\partial^4 w}{\partial x^4} + k_1 w + \epsilon \left( c_1 \frac{\partial w}{\partial t} + c_2 \frac{\partial^5 w}{\partial x^4 \partial t} + k_3 w^3 \right) = 0$$
(4)

The nonlinear partial differential equation, as presented in Eq. (4), involves independent variables x and t corresponding to spatial and temporal dimensions, respectively. The method of multiple scales can be applied by employing slow time scales or large space scales. Here, by employing a multiscale approach, additional scales are introduced to account for slow time scale, denoted as  $T_1 = \epsilon t$ . These augment the original scales for time  $T_0 = t$ . Another way of the multiple scales method by employing spatial expansion is demonstrated in Appendix A. The time derivatives can be written as

$$\frac{\partial}{\partial t} = \frac{\partial}{\partial T_0} + \epsilon \frac{\partial}{\partial T_1} \tag{5}$$

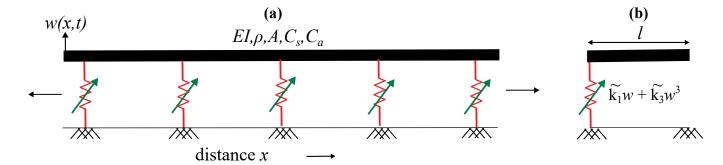


FIG. 1. (a) The Euler Bernoulli beam periodically supported by nonlinear springs (b) The representative unit cell

Further, the solution can be obtained as

$$w(x,t,\epsilon) = \sum_{n=0}^{1} \epsilon^{n} w_{n}(x,T_{0},T_{1}) + O(\epsilon)$$
 (6)<sub>197</sub>

By substituting the solution given in Eq. (6) into the 199 partial differential equation (Eq. (4)) and employing the 200 temporal derivatives provided in Eq. (5), yields

$$\epsilon^{2} \left( \frac{\partial^{2} w_{0}}{\partial T_{1}^{2}} + 2 \frac{\partial^{2} w_{1}}{\partial T_{1} \partial T_{0}} \right) + \epsilon^{3} \frac{\partial^{2} w_{1}}{\partial T_{1}^{2}}$$

$$+\epsilon \left( 2 \frac{\partial^{2} w_{0}}{\partial T_{1} \partial T_{0}} + \frac{\partial^{2} w_{1}}{\partial T_{0}^{2}} \right) + \frac{\partial^{2} w_{0}}{\partial T_{0}^{2}} + \omega_{n}^{2} \left( \epsilon \frac{\partial^{4} w_{1}}{\partial x^{4}} + \frac{\partial^{4} w_{0}}{\partial x^{4}} \right)^{203}_{204}$$

$$+k_{1} \left( w_{0} + \epsilon w_{1} \right) + c_{1} \epsilon \left( \frac{\partial w_{0}}{\partial T_{0}} + \epsilon^{2} \frac{\partial w_{1}}{\partial T_{1}} + \epsilon \left( \frac{\partial w_{1}}{\partial T_{0}} + \frac{\partial w_{0}}{\partial T_{1}} \right) \right)^{205}_{207}$$

$$+c_{2} \epsilon \left( \epsilon^{2} \frac{\partial^{5} w_{1}}{\partial x^{4} \partial T_{1}} + \epsilon \left( \frac{\partial^{5} w_{1}}{\partial x^{4} \partial T_{0}} + \frac{\partial^{5} w_{0}}{\partial x^{4} \partial T_{1}} \right) + \frac{\partial^{5} w_{0}}{\partial x^{4} \partial T_{0}} \right)^{206}_{207}$$

$$+\epsilon k_{3} \left( w_{0} + \epsilon w_{1} \right)^{3} = 0$$

$$(7)_{203}$$

Further, collecting terms with a similar power of  $\epsilon$ , the following equation can be written.

$$\frac{\partial^{2} w_{0}}{\partial T_{0}^{2}} + \frac{\partial^{4} w_{0}}{\partial x^{4}} + k_{1} w_{0}$$
184
$$+ \epsilon \left( \frac{\partial^{2} w_{1}}{\partial T_{0}^{2}} + 2 \frac{\partial^{2} w_{0}}{\partial T_{1} \partial T_{0}} + \frac{\partial^{4} w_{1}}{\partial x^{4}} + k_{1} w_{1} \right)$$
185
$$+ \epsilon \left( c_{1} \frac{\partial w_{0}}{\partial T_{0}} + c_{2} \frac{\partial^{5} w_{0}}{\partial x^{4} \partial T_{0}} + k_{3} w_{0}^{3} \right) + O(\epsilon^{2}) = 0 \quad (8)_{214}$$
216

The governing partial differential equations can be ex-216 pressed through the consolidation of terms with similar217 powers of  $\epsilon$  as.

$$R_0 + R_1 \epsilon + O(\epsilon^2) = 0$$
 (9)<sup>219</sup>

190 where

189

172

191 
$$R_{0} : \frac{\partial^{2}w_{0}}{\partial T_{0}^{2}} + \frac{\partial^{4}w_{0}}{\partial x^{4}} + k_{1}w_{0} = 0$$
192 
$$R_{1} : \frac{\partial^{2}w_{1}}{\partial T_{0}^{2}} + 2\frac{\partial^{2}w_{0}}{\partial T_{1}\partial T_{0}} + \frac{\partial^{4}w_{1}}{\partial x^{4}} + k_{1}w_{1}$$
193 
$$+ c_{1}\frac{\partial w_{0}}{\partial T_{0}} + c_{2}\frac{\partial^{5}w_{0}}{\partial x^{4}\partial T_{0}} + k_{3}w_{0}^{3} = 0$$
(11)<sup>22</sup>

Eq. (9) expands the nonlinear equation of motion in orders of  $(\epsilon)$ , matching it to the zeroth order and first order in  $(\epsilon)$ . The solutions  $w_0$ , and  $w_1$  can be obtained by solving equations  $R_0 = 0$  and  $R_1 = 0$  in progression.

In the case of flexural wave solution in infinite structure, the boundary complexities can be ignored and the plane wave solution can be assumed for the equation  $R_0 = 0$  as [39].

$$w_0 = A(T_1) e^{i(\kappa x - \omega T_0)} + \bar{A}(T_1) e^{-i(\kappa x - \omega T_0)}$$
 (12)

Substituting Eq. (12) in Eq. (10) the dispersion relation for the linear system can be derived as

$$\kappa^4 - \omega^2 + k_1 = 0 (13)$$

Further, substituting Eq. (12) in Eq. (11), the following equation can be obtained

$$\frac{\partial^2 w_1}{\partial T_0^2} + \frac{\partial^4 w_1}{\partial x^4} + k_1 w_1$$

$$= \left(2i\omega \frac{\partial A}{\partial T_1} + ic_1 \omega A + ic_2 \kappa^4 \omega A - 3 k_3 A^2 \bar{A}\right) e^{i(\kappa x - \omega T_0)}$$

$$- k_3 A^3 e^{i(3\kappa x - 3\omega T_0)} + cc \tag{14}$$

The particular solution of Eq. (14) contains secular terms which lead to nonuniform expansion in scaled time. Since the linear operator  $\left(\frac{\partial^2}{\partial T_0^2} + \frac{\partial^4}{\partial x^4} + k_1\right)$  is self-adjoint, as demonstrated in the Appendix B, the solvability condition for eliminating secular terms can be derived. This condition is obtained by equating the forcing terms responsible for generating the secular terms to zero, which leads to the following partial differential equation governing the amplitude A.

$$2i\omega \frac{\partial A}{\partial T_1} + ic_1\omega A + ic_2\kappa^4\omega A - 3k_3A^2\bar{A} = 0$$

$$i\frac{\partial A}{\partial T_1} = -iA\left(\frac{c_1 + c_2\kappa^4}{2}\right) + \frac{3}{2}k_3\omega^{-1}A^2\bar{A}$$
 (15)

The solution of amplitude A in polar form can be assumed as  $A=\frac{1}{2}a(T_1)\mathrm{e}^{\mathrm{i}\beta(T_1)}$  and its complex conjugate,  $\bar{A}=\frac{1}{2}a(T_1)\mathrm{e}^{-\mathrm{i}\beta(T_1)}$ . Further, the frequency shift due to

nonlinearity will be later demonstrated and reflected by 258 the complex-valued phase of amplitude modulation. As the phase  $\beta$  is a function of slow time scale  $(T_1)$  it essentially captures the frequency shift due to nonlinearity. To determine the phase, by substituting the amplitude A and  $\bar{A}$  into Eq. (15) the following equations can be<sup>260</sup> obtained.

225

226

227

229

230

232

233

235

236

237

240

241

242

244

245

247

249

251

252

257

$$i\frac{1}{2}\left(e^{i\beta}\frac{\partial a}{\partial T_{1}} + ie^{i\beta}a\frac{\partial\beta}{\partial T_{1}}\right)$$

$$= -i\left(\frac{c_{1} + c_{2}\kappa^{4}}{2}\right)\frac{a}{2}e^{i\beta} + \frac{3}{2}k_{3}\omega^{-1}e^{i\beta}\frac{a^{3}}{8}$$

$$(16)_{266}^{265}$$

Further separating the real and imaginary parts following 268 equations can be obtained.

$$\frac{\partial a}{\partial T_1} = -\left(\frac{c_1 + c_2 \kappa^4}{2}\right) a \tag{17}^{271}$$

$$\frac{\partial \beta}{\partial T_1} = -\frac{3}{8} k_3 \omega^{-1} a^2 \tag{18}^{272}$$

The amplitude modulation can be obtained by solving 238 Eq. (17) as

$$a = a_0 e^{-\left(\frac{c_1 + c_2 \kappa^4}{2}\right) T_1} \tag{19}_{276}^{275}$$

Further, the frequency shift can be obtained by substi-277 tuting Eq. (19) into Eq. (18) as follows.

$$\frac{\partial \beta}{\partial T_1} = -\frac{3}{8} k_3 \omega^{-1} a_0^2 e^{-(c_1 + c_2 \kappa^4) T_1}$$

$$\beta = \frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)} e^{-(c_1 + c_2 \kappa^4) T_1} + \beta_0 \qquad (20)_{280}$$

Further, the initial condition has been assumed as at $^{282}$  $T_1 = 0, \beta = 0$  and so,  $\beta_0 = -\frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)}$ . The shift in  $\frac{283}{284}$ frequency can be determined as

$$\beta = \frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)} e^{-(c_1 + c_2 \kappa^4) T_1} - \frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)}$$

$$\beta = -\frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)} \left(1 - e^{-(c_1 + c_2 \kappa^4) T_1}\right) \tag{21}$$

The wave solution can be written by substituting ampli-288 tude Eq. (19) and frequency shift Eq. (21) into Eq. (12) $^{289}$ 

$$w_0 = \frac{a_0}{2} e^{-\left(\frac{c_1 + c_2 \kappa^4}{2}\right) T_1}$$

$$e^{-i\frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4) T_1} \left(1 - e^{-\left(c_1 + c_2 \kappa^4\right) T_1}\right) T_1} e^{i(\kappa x - \omega T_0)} + cc$$

$$(22)_{295}$$

Further, substituting  $T_0 = t$  and  $T_1 = \epsilon t$ , 255

$$w_0 = \frac{a_0}{2} e^{-\left(\frac{c_1 + c_2 \kappa^4}{2}\right) \epsilon t}$$

$$e^{-i\frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)t} \left(1 - e^{-\left(c_1 + c_2 \kappa^4\right) \epsilon t}\right) t} e^{i(\kappa x - \omega t)} + cc \quad (23)^{29}$$

The frequency shift can be written as

$$\omega_s = \omega + \frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4) t} \left( 1 - e^{-(c_1 + c_2 \kappa^4) \epsilon t} \right)$$
 (24)

To further clarify the frequency shift derived in Eq. (24), it is important to highlight that the system's nonlinearity leads to an amplitude-dependent frequency shift. Initially, when t is small and the amplitude is large, the nonlinearity induces a substantial frequency shift. As time progresses and damping reduces the amplitude, the corresponding frequency shift diminishes. This behavior illustrates the direct correlation between the wave amplitude and the magnitude of the frequency shift in nonlinear systems. However, in the case of an undamped system, substituting  $c_1 = c_2 = 0$  in Eq. (15) following frequency shift and wave solution can be obtained.

$$\omega_s = \omega + \frac{3k_3a_0^2}{8\omega}\epsilon\tag{25}$$

$$w_0 = a_0 e^{-\left(\frac{3k_3 a_0^2}{8\omega}\right)\epsilon t} e^{i(\kappa x - \omega t)} + cc$$
 (26)

The amplitude-dependent dispersion relation of an undamped beam supported by nonlinear springs can be obtained by squaring Eq. (25), substituting  $\kappa^4 + k_1$  at  $\omega^2$ and neglecting terms of  $\epsilon^2$  as

$$\omega_s^2 = \kappa^4 + k_1 + \epsilon \frac{3k_3 a_0^2}{4} \tag{27}$$

Note that, the strength of cubic nonlinearity is generally considered by factor  $\Pi = \frac{\epsilon k_3 a_0^2}{k_1}$ . The method of multiple scales is applicable in the conservative bounds as  $|\Pi| < 0.1$  [41]. Moreover, when the system is damped, the amplitude is always decreasing and is independent of the strength of cubic nonlinearity as time progresses which makes the system always stable [19].

## Finite element modelling

A finite element formulation of the Euler-Bernoulli beam on nonlinear elastic springs has been developed for numerical validation. A governing strong form equation for a representative unit cell is derived as Eq. (4). Let,  $w(x,t) = \psi(x)q(t)$ , where,  $q(t) = \{u_i, u'_i, u_j, u'_i\}^T$ ;  $u_i$ and  $u_i'$  are displacement and slope at  $i^{th}$  node at time t. Further  $\psi(x)$  is shape function defined by Hermite polynomial as  $\psi(x) = [\psi_1 \ \psi_2 \ \psi_3 \ \psi_4]$  where,

$$\psi_1(x) = \frac{1}{l^3} \left( 2x^3 - 3x^2l + l^3 \right)$$

$$\psi_2(x) = \frac{1}{l^3} \left( x^3l - 2x^2l^2 + xl^3 \right)$$

$$\psi_3(x) = \frac{1}{l^3} \left( -2x^3 + 3x^2l \right)$$

$$\psi_4(x) = \frac{1}{l^3} \left( x^3l - x^2l^2 \right)$$
(28)

Employing the Galerkin method, the weak form of a strong form equation given in Eq. (4) can be derived as [40]

$$\underbrace{\left[\int_{0}^{l} \psi^{T} \psi dx\right]}_{\mathbf{M}} \ddot{q}(t) + \underbrace{\left[\frac{\omega_{n}^{2}}{l^{3}} \int_{0}^{l} \frac{d^{2} \psi}{dx^{2}}^{T} \frac{d^{2} \psi}{dx^{2}} dx\right]}_{\mathbf{K}} q(t) + \underbrace{\left[k_{1} \psi(0)\right]}_{\mathbf{L}} q(t) + \underbrace{\left[\epsilon c_{1} \int_{0}^{l} \psi^{T} \psi dx + \epsilon c_{2} \int_{0}^{l} \frac{d^{2} \psi}{dx^{2}}^{T} \frac{d^{2} \psi}{dx^{2}} dx\right]}_{\mathbf{C}} \dot{q}(t) + \underbrace{\left[\epsilon k_{3} \psi(0)^{3}\right]}_{\mathbf{N}} q(t)^{3} = 0 \tag{29}$$

The typical element mass matrix ( $\mathbf{M}$ ), stiffness matrix<sub>325</sub> ( $\mathbf{K}$ ), mass and stiffness proportional Rayleigh damping<sub>326</sub> matrix ( $\mathbf{C}$ ) [57], and the linear and nonlinear spring stiff-<sub>327</sub> ness matrices ( $\mathbf{L}$  and  $\mathbf{N}$ ) for a single unit have been de-<sub>328</sub> rived as follows.

$$\mathbf{M} = \frac{1}{420} \begin{pmatrix} 156 & 22 \, l & 54 & -13 \, l \\ 22 \, l & 4 \, l^2 & 13 \, l & -3 \, l^2 \\ 54 & 13 \, l & 156 & -22 \, l \\ -13 \, l & -3 \, l^2 & -22 \, l & 4 \, l^2 \end{pmatrix}$$

$$\mathbf{K} = \omega_n^2 \begin{pmatrix} 12 & 6l & -12 & 6l \\ 6l & 4l^2 & -6l & 2l^2 \\ -12 & -6l & 12 & -6l \\ 6l & 2l^2 & -6l & 4l^2 \end{pmatrix}$$
(30)<sub>340</sub>

$$\mathbf{C} = \frac{c_1}{420} \begin{pmatrix} 156 & 22 \, l & 54 & -13 \, l \\ 22 \, l & 4 \, l^2 & 13 \, l & -3 \, l^2 \\ 54 & 13 \, l & 156 & -22 \, l \\ -13 \, l & -3 \, l^2 & -22 \, l & 4 \, l^2 \end{pmatrix}$$

$$+\frac{c_2}{l^3} \begin{pmatrix} 12 & 6\,l & -12 & 6\,l \\ 6\,l & 4\,l^2 & -6\,l & 2\,l^2 \\ -12 & -6\,l & 12 & -6\,l \\ 6\,l & 2\,l^2 & -6\,l & 4\,l^2 \end{pmatrix} \qquad {}^{347} {}^{348} {}^{350}$$

Further, the global matrices ( $[]_g$ ) have been obtained and 357 the global equation of motion can be written as follows. 358

$$\mathbf{M}_g \ddot{v} + \mathbf{K}_g v + \mathbf{L}_g v + \epsilon \left( \mathbf{C}_g \dot{v} + \mathbf{N}_g v^3 \right) = 0 \qquad (33)_{360}^{359}$$

where  $\mathbf{v}$  is the global displacement vector.

#### III. RESULTS AND DISCUSSION

In this section, the proposed theory for nonlinear wave<sub>366</sub> propagation has been validated with the numerical solu-<sub>367</sub> tion. Further, this section discusses the wave dispersion<sub>368</sub>

phenomena within both undamped and damped Euler-Bernoulli beams supported by cubic nonlinearities, exploring both hardening and softening nonlinear behaviors. Additionally, it thoroughly examines the impact of viscous damping and strain rate damping on damped beams.

#### A. Numerical validation

The nonlinear dispersion relation can be derived using two approaches. The first is the free wave approach, where the propagation constant  $(\kappa)$  is fixed by applying harmonic initial condition, and the corresponding frequency  $(\omega)$  is determined. Alternatively, the driven wave approach fixes the frequency  $(\omega)$  through harmonic boundary conditions, leading to the determination of the propagation constant. However, in dispersive media, the boundary complexity decreases the amplitude of harmonic boundary conditions in the far field, impacting the amplitude-dependent dispersion. Consequently, for the nonlinear dispersion relation of infinite continuous beams, the free wave approach is preferable for numerical validation.

The MATLAB ODE45 function has been used to obtain the solution of the Eq. (33). For this, a very long beam has been simulated for a long time to get accurate fast Fourier transform (FFT) results but not so long time that the boundary reflections affect the solution. The FFT is calculated in both space and time to get wavenumber  $(\kappa)$  as well as frequency  $(\omega)$ . According to the free-wave approach, the frequency shift is obtained by fixing the wavenumber by imposing the initial condition as  $w(x,0) = A\cos(\kappa x)$ ,  $w'(x,0) = -A\kappa\sin(\kappa x)$ .

For illustration purposes, the wave number  $\kappa=0.5$  and the amplitude A=1 are applied in the initial condition to the beam shown in Fig. 2(a). Furthermore, the stiffness of the elastic springs is taken as  $k_1=1, k_3=-1$  and  $\epsilon=1$  for the undamped system. In Fig. 2(b), the displacement profile of the center portion of the beam

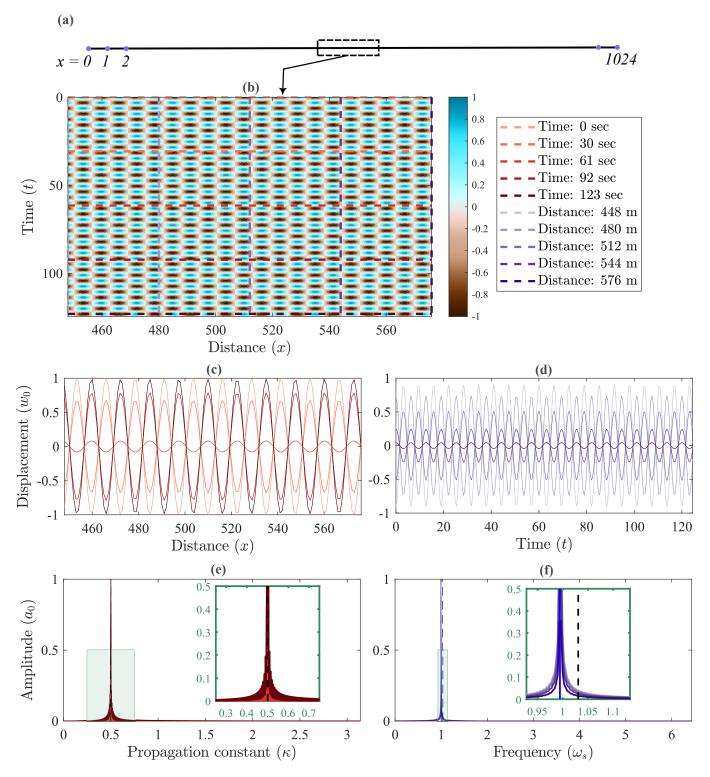


FIG. 2. (a) The long Euler Bernoulli beam with  $c_1 = c_2 = 0$ ,  $k_3 = -1$ ,  $k_1 = 1$ ,  $k_2 = 0.1$ , (b) Displacement contour of the middle portion of the beam shown by the dashed box, (c) Displacement versus distance plot at different instances of time shown in horizontal dashed lines with orange shades in (b), (d) Displacement versus time plot at different locations shown in vertical dashed lines with violet shades in (b), (e) FFT plots corresponding to displacement profiles shown in (c), (f) FFT plots corresponding to time histories shown in (d).

with respect to space and time is demonstrated. Fur-371 different times as shown by the horizontal dashed line in ther, the beam displacement with respect to space at 372 Fig. 2(b) are plotted in Fig. 2(c), and its FFT plots

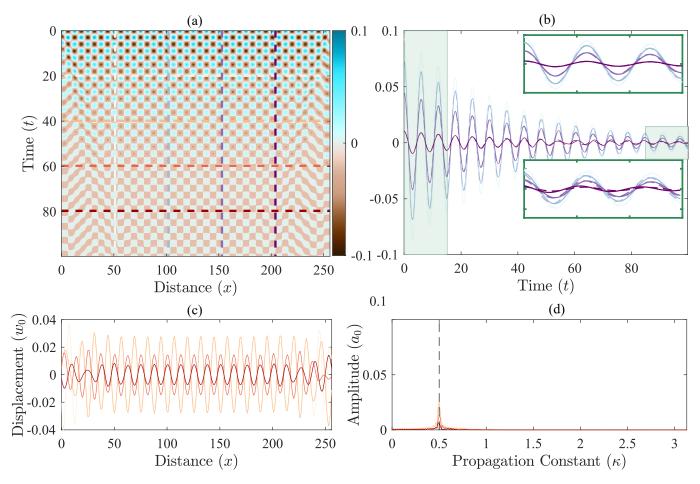


FIG. 3. (a) Displacement contour of the Euler Bernoulli beam with  $c_1 = c_2 = 0.05, k_3 = 1, k_1 = 1, A = 0.1, \epsilon = 1$ ; (b) Displacement versus time plot at different locations shown in vertical dashed lines with violet shades in (a) where the solid lines depict numerical solution and the dashed lines depict analytical solution, moreover the magnified plots are shown inside to showcase the better validation in the initial time window and degraded validation in later time window; (c) Displacement versus distance plot at different instances of time shown in horizontal dashed lines with orange shades in (a); (d) FFT plots corresponding to displacement profiles shown in (c).

are plotted in Fig. 2(e) which shows peak amplitude at  $_{393}$  the wavenumber ( $\kappa = 0.5$ ) applied in the initial condi- $_{394}$  tion. Furthermore, the beam displacement with respect  $_{395}$  to time at different spaces located by vertical dashed lines  $_{396}$  as shown in Fig. 2(b) are plotted in Fig. 2(d), and its  $_{397}$  FFT can be observed in Fig. 2(f). The peak amplitude  $_{398}$  frequency in Fig. 2(f) matches exactly with the analyt- $_{399}$  ically obtained nonlinear frequency shown with a solid  $_{400}$  blue line. As the nonlinearity is soft the frequency shift  $_{401}$  is negative which can be seen in the magnified plot in Fig.  $_{402}$  2(f), where the frequency of the linear system is shown by  $_{403}$  a black dashed line. This validates the proposed theory  $_{404}$  of the free wave approach for an undamped system.

374

375

376

377

378

379

380

381

382

383

384

385

386

388

389

391

The damped system has been validated further in Fig. 406 3 with the following parameters: spring stiffness with 407 hard nonlinearity as  $k_1 = 1, k_3 = 1$ , the damping factor 408  $c_1 = c_2 = 1$  and  $\epsilon = 1$ . In addition, the initial condition 409 is kept similar to the undamped case as the wave num-410 ber  $\kappa = 0.5$  and the amplitude A = 1. The displacement profile of the beam in space-time is illustrated in Fig.

3(a) which shows the decreases in amplitude as time progresses. However, the wavelength is constant as shown in Fig. 3(c) in which the displacement is plotted at different times shown by horizontal dashed lines in Fig. 3(a). Further, its FFT is plotted in Fig. 3(d), which shows the consistent wavenumber at different times. Furthermore, the time histories at different locations shown by vertical dashed lines in Fig. 3(a) are plotted in Fig. 3(b). The decrease in amplitude due to damping reduces the frequency shift with time, therefore instead of FFT of time histories for validation, the analytical displacement time histories are plotted with dashed lines to validate the proposed theory for the damped system. In magnified subplots of Fig. 3(b), the analytical and numerical solution matches exactly in the initial phase (Fig. 3(b1)) however, they deviate in long time as shown in Fig. 3(b2) as the analytical solution is valid till time inversely proportional to the scaling factor ( $\epsilon$ ) [16].

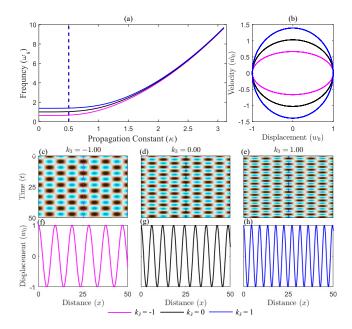


FIG. 4. (a) Dispersion relation plot for undamped system with  $c_1=c_2=0, k_1=1$  and nonlinear stiffness parameter  $k_3=-1,0$  and 1; (b) Phase portrait for propagation constant  $\kappa=0.5$ ; (c) displacement profile for  $\kappa=0.5, k_3=-1$ ; (d) displacement profile for  $\kappa=0.5, k_3=0$ ; (e) displacement profile for  $\kappa=0.5, k_3=1$ ; (f) Displacement time history at middle node of the beam with  $\kappa=0.5, k_3=-1$ ; (g) Displacement time history at the middle node of the beam with  $\kappa=0.5, k_3=0$ ; (h) Displacement time history at the middle node of the beam with  $\kappa=0.5, k_3=0$ ; (h) Displacement time history at the middle node of the beam with  $\kappa=0.5, k_3=1$ .

#### B. Undamped system

411

412

413

414

415

416

417

419

420

421

422

423

424

425

426

428

429

430

431

432

434

435

436

437

This section presents an analysis of the dispersion re-439lation of the nonlinear undamped system based on the  $_{440}$ proposed analytical plane wave solution. Initially, the<sub>441</sub> influence of soft and hard nonlinearity on wave disper-442 sion is investigated, as illustrated in Fig. 4, considering $_{443}$ nonlinear spring stiffness values of  $k_3 = -1, 0, \text{ and } 1.$  An<sub>444</sub> amplitude of A=1 and a scaling parameter of  $\epsilon=1$  have been assumed. In Fig. 4(a), the dispersion plot is gener-446 ated by varying the propagation constant ( $\kappa$ ) from 0 to<sub>447</sub>  $\pi$  to obtain the frequency  $\omega_s$  using Eq. (25). As the frequency shift is inversely proportional to the frequency, It can be noticed that frequency shift is higher at low propagation constants and it diminishes at higher wavenum-449 bers. Subsequently, in Fig. 4(c-e), we display the displacement contours for the free vibration of the beam for  $_{_{450}}$  $\kappa = 0.5$ . It is noteworthy that while the wave number remains consistent across all three figures, the temporal  $^{451}$ frequency increases as the nonlinear spring stiffness escalates. Similarly, in Fig. 4(f-h), we plot the response of the midpoint of the beam. Additionally, the corresponding  $_{454}$ phase portrait is depicted in Fig. 4(b), clearly illustrat-455 ing the positive and negative shifts in frequency for the hardening and softening systems, respectively, from the 456 linear dispersion.

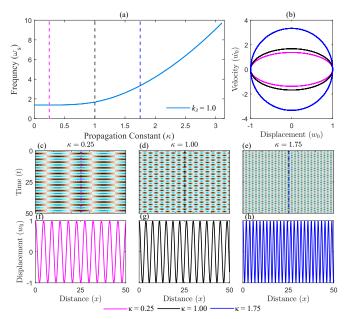


FIG. 5. (a) Dispersion relation plot for the undamped system with  $c_1=c_2=0, k_1=1, k_3=1$ ; (b) Phase portrait for propagation constant  $\kappa=0.25, 1.00$  and 1.75; (c) displacement profile for  $\kappa=0.25, k_3=1$ ; (d) displacement profile for  $\kappa=1.00, k_3=1$ ; (e) displacement profile for  $\kappa=1.75, k_3=1$ ; (f) Displacement time history at middle node of the beam with  $\kappa=0.25, k_3=1$ ; (g) Displacement time history at middle node of the beam with  $\kappa=1.00, k_3=10$ ; (h) Displacement time history at middle node of the beam with  $\kappa=1.75, k_3=1$ .

Additionally, to analyze the impact of propagation constant, three different propagation constants:  $\kappa=0.25,1$ , and 2 have been considered, for a nonlinear system with hardening stiffness  $k_3=1$ , as depicted in the dispersion plot in Fig. 5(a). Furthermore, the displacement profile of free vibration is illustrated using contour plots in Fig. 5(c-e). The temporal response of the midpoint of the beam is shown in Fig. 5(f-h), accompanied by its corresponding phase portrait in Fig. 5(b). It is evident from these analyses that as the propagation constant increases, the corresponding frequency also increases, with the increment being minimal until propagation constant  $\kappa=1$ .

#### C. Damped system

The effect of viscous damping and strain rate damping along with system nonlinearity on wave dispersion has been discussed in this section. The following three types of systems have been discussed.

- 1. Viscous damping  $c_1 = 0.25$  and Strain rate damping  $c_2 = 0$
- 2. Viscous damping  $c_1 = 0$  and Strain rate damping  $c_2 = 0.25$

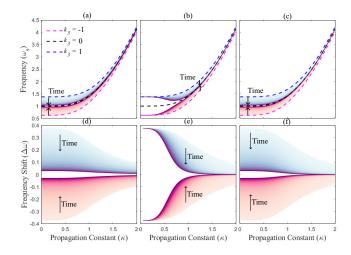


FIG. 6. Dispersion relation plots at different time instances are illustrated for hardening system with blue shades and softening system with shades of pink for (a) only viscous damping  $c_1 = 0.25$  and  $c_2 = 0$ , (b) only strain rate damping  $c_1 = 0$  and  $c_2 = 0.25$  and (c) viscous damping and strain rate damping  $c_1 = 0.25$  and  $c_2 = 0.25$ ; Frequency shift versus propagation constant  $(\kappa)$  plots at different time instances are illustrated for hardening system with blue shades and softening system with shades of pink for (d) only viscous damping  $c_1 = 0.25$  and  $c_2 = 0$ , (e) only strain rate damping  $c_1 = 0$  and  $c_2 = 0.25$  and  $c_2 = 0.25$ 

# 3. Viscous damping $c_1 = 0.25$ and Strain rate damping $c_2 = 0.25$

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

479

480

481

482

484

485

The dispersion relation plots of frequency ( $\omega$ ) versus<sub>488</sub> propagation constant ( $\kappa$ ) are presented in Fig. 6(a, b,<sub>489</sub> and c) for the aforementioned configurations, represent-<sub>490</sub> ing only viscous damping, only strain rate damping, and<sub>491</sub> combined viscous and strain rate damping, respectively.<sub>492</sub> Considering the time-dependent nature of frequency shift<sub>493</sub> corresponding to propagation constants, the dispersion is<sub>494</sub> visualized at multiple time instances ranging from 0 to<sub>495</sub> 100 seconds for both softening and hardening systems.<sub>496</sub> The evolution of these plots reveals a transition from un-<sub>497</sub> damped to linear system behavior over time.

Furthermore, the plots of frequency shift  $(\Delta\omega)$  ver-499 sus propagation constant  $(\kappa)$  in Fig. 6(d-f) for all three<sub>500</sub> damping configurations highlight a decreasing trend in<sub>501</sub> frequency shift with increasing time. Notably, for sys-<sub>502</sub> tems with only strain rate damping  $(c_2)$ , the damping<sub>503</sub> effect is proportional to  $\kappa^4$ , resulting in a more rapid de-<sub>504</sub> cay for higher wavenumbers. Conversely, systems with<sub>505</sub> viscous damping  $(c_1)$  exhibit a damping effect indepen-<sub>506</sub> dent of wavenumber. In damped systems, nonlinear ef-<sub>507</sub> fects tend to diminish with decaying amplitudes.

First, we investigate the influence of viscous damping<sub>509</sub> on the behavior of a system under varying propagation<sub>510</sub> constants. Specifically, we focus on three distinct prop-<sub>511</sub> agation constants, namely  $\kappa = 0.50, 1.00$ , and 1.50, ex-<sub>512</sub> amining the dynamics of frequency shift over time. This<sub>513</sub>

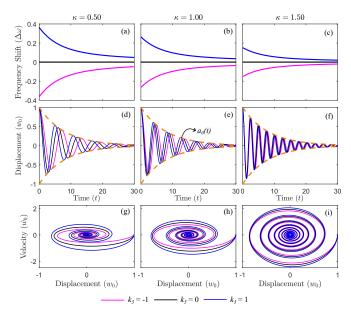


FIG. 7. Damped nonlinear system with only viscous damping  $c_1 = 0.25$ ;  $c_2 = 0$  and  $k_1 = 1$ . (a), (b) and (c) shows a frequency shift  $(\Delta\omega)$  versus time (t) propagation constant  $\kappa = 0.50, 1.00$  and 1.50 respectively; (d), (e) and (f) show displacement  $(w_0)$  versus time (t) at the middle node of beam for propagation constant  $\kappa = 0.50, 1.00$  and 1.50 respectively and yellow dashed line is for amplitude envelope; (g), (h) and (i) shows phase portraits for middle node of beam for propagation constant  $\kappa = 0.50, 1.00$  and 1.50 respectively.

analysis is presented through plots in Fig. 7 (a, b, and c), where differentiating characteristics of damping effects are delineated for hardening (magenta line), softening (blue line), and linear (black line) systems. Our findings reveal a convergence of frequency shifts to zero over time across all propagation constants, indicating consistent trends irrespective of the system's nonlinearity. Furthermore, the temporal evolution of displacement at the beam's middle node is depicted in Fig. 7 (d, e, and f) for  $\kappa = 0.50, 1.00,$  and 1.50, respectively. In addition to these plots, the amplitude modulation, represented by the yellow dashed line, remains uniform across different propagation constants and types of nonlinearity. Additionally, phase portraits are presented in Fig. 7 (g, h, and i) for the same set of propagation constants. Notably, higher propagation constants correspond to higher velocities, indicative of increased frequencies. Moreover, the phase portraits elucidate distinct shifts from linear frequency: positive for hardening and negative for softening nonlinear systems, underscoring characteristic nonlinear behaviors Additionally, we explore the impact of strain rate damping on systems characterized by diverse propagation constants. The damping factor corresponding to strain rate damping is proportional to  $\kappa^4$ , so the amplitude modulation varies with the propagation constant. The temporal evolution of frequency shift is depicted in Fig. 8(a, b, and c) for propagation constants  $\kappa = 0.5, 1.00, \text{ and } 1.50, \text{ respectively.}$  Notably, the rate

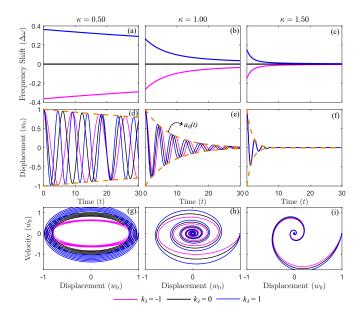


FIG. 8. Damped nonlinear system with only viscous damping  $c_1=0; c_2=0.25$  and  $k_1=1$ . (a), (b) and (c) shows a frequency shift  $(\Delta\omega)$  versus time (t) propagation constant  $\kappa=0.50, 1.00$  and 1.50 respectively; (d), (e) and (f) show displacement  $(w_0)$  versus time (t) at the middle node of beam for propagation constant  $\kappa=0.50, 1.00$  and 1.50 respectively and the yellow dashed line is for amplitude envelope; (g), (h) and (i) shows phase portraits for the middle node of beam for propagation constant  $\kappa=0.50, 1.00$  and 1.50 respectively.

of decrease in frequency shift varies significantly across different propagation constants, being notably slower for lower values of  $\kappa$  and more rapid for higher values. Upon examining the amplitude modulation for all three propsagation constants in Fig. 8(d, e, and f), it becomes apparent that the decay progresses at a relatively slow pace when  $\kappa=0.50$ , whereas it accelerates swiftly when sequence when  $\kappa=0.50$ , whereas it accelerates swiftly when sequence when  $\kappa=0.50$ , the phase portraits presented in Fig. 8(g, h, and i) for  $\kappa=0.5, 1.00,$  and 1.50 reinforce these observations, providing further clarity on the relationship between propagation constants and damping effects.

514

515 516

517

518

519

520

522

523

525

527

528

530

531

533

534

535

536

537

539

540

Furthermore, we examine the combined effect of both<sub>551</sub> types of damping, as illustrated in Fig. 9. The plots<sub>552</sub> depicting frequency shift over time are presented in Fig. 553 9(a, b, and c) for propagation constants  $\kappa = 0.5, 1.00, 554$ and 1.50, respectively. Notably, the frequency shift grad-555 ually diminishes over time, converging towards the fre-556 quency of a linear system as time progresses. Addition-557 ally, the amplitude modulation shown in Fig. 9(d, e, and 558 f) elucidates the increase in decay rate with propagation 559 constant. In the lower range of propagation constants,560 amplitude decay is primarily attributed to viscous damp-561 ing, whereas in the higher range, it is predominantly due<sub>562</sub> to strain rate damping. To gain a clearer understand-563 ing, phase portraits are depicted in Fig. 8(g, h, and i)<sub>564</sub> for  $\kappa = 0.5, 1.00$ , and 1.50, respectively, reinforcing these observations.

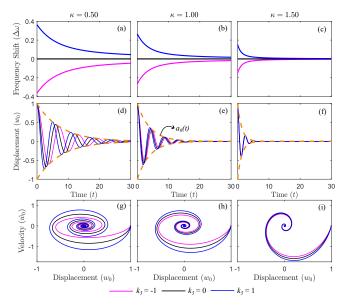


FIG. 9. Damped nonlinear system with only viscous and strain rate damping combine  $c_1 = 0.25; c_2 = 0.25$  and  $k_1 = 1$ . (a), (b) and (c) shows a frequency shift  $(\Delta \omega)$  versus time (t) propagation constant  $\kappa = 0.50, 1.00$  and 1.50 respectively; (d), (e) and (f) show displacement  $(w_0)$  versus time (t) at the middle node of beam for propagation constant  $\kappa = 0.50, 1.00$  and 1.50 respectively and yellow dashed line is for amplitude envelope; (g), (h) and (i) shows phase portraits for middle node of beam for propagation constant  $\kappa = 0.50, 1.00$  and 1.50 respectively.

### IV. SUMMARY AND CONCLUSION

In this paper, the analytical closed-form dispersion relation equation for a damped slender elastic beam periodically supported by cubic nonlinear springs has been derived. To derive the nonlinear dispersion relation, the method of multiple scales is employed after introducing a scaling parameter,  $\epsilon$ , to account for slow time scales. Through this approach, the governing partial differential equation is expanded and solved iteratively, leading to expressions for complex amplitudes and frequency shifts. The amplitude modulation and frequency shift equations are derived as functions of damping coefficients and amplitude of the initial plane wave. The proposed theory for nonlinear wave propagation was validated numerically through finite element formulation. Numerical simulations were carried out using the MATLAB ODE45 function. The results of numerical and analytical solutions of the undamped and damped systems show consistency which affirms the validity of the developed analytical closed-form solutions.

An extensive investigation into wave dispersion in nonlinear undamped systems was carried out using an analytical plane wave solution. The key findings are as follows:

• For a given propagation constant, there will be an

amplitude-dependent shift in frequency. The posi-614 tive shift is observed for hardening springs and negative for softening springs.

• Since the frequency shift is inversely proportional<sub>617</sub> to the frequency of the corresponding linear sys-<sub>618</sub> tem, nonlinearity has a greater impact at low propagation constants or low frequencies and it reduces with increasing propagation constants or frequen-<sub>619</sub> cies.

Additionally, the study thoroughly investigates the ef- $_{621}$  fects of viscous damping and strain rate damping, both $_{622}$  individually and in combination. Through the analysis $_{623}$  of amplitude modulation and phase portraits, distinct $_{624}$  behaviors were elucidated across systems with different $_{625}$  propagation constants and damping effects. The key $_{626}$  findings are summarized as follows:

- Over time, the amplitude-dependent frequency shift decreases and eventually reaches zero, regard-628 less of propagation constants or damping type. Hence, the influence of nonlinearity diminishes over629 time in a damped system.
- Analysis of viscous damping revealed a consistent decay in frequency shifts over time across all propagation constants, while amplitude modulation re-631 mained uniform.
- The rate at which the amplitude decays in a sys-<sup>634</sup> tem with strain rate damping is directly propor-<sup>635</sup> tional to the fourth power of propagation constant.<sup>636</sup> This leads to a relatively sluggish convergence of the frequency shift to zero at low propagation con-<sup>637</sup> stants, but quite more rapid convergence at higher <sub>638</sub> propagation constants.
- Furthermore, the combined effect of both types of damping illustrated a gradual convergence of frequency towards that of a linear system as time progressed. Amplitude decay was primarily attributed to viscous damping at lower propagation constants and strain rate damping at higher propagation con-641 stants.

This study has the following major contributions:

- A closed-form equation for amplitude-dependent<sup>645</sup> dispersion relation has been derived for continu-<sup>646</sup> ous systems, providing a valuable analytical tool<sup>647</sup> for further research in this domain.
- Furthermore, the incorporation of damping effects<sup>649</sup> into the analysis of nonlinear dispersion offers in-<sup>650</sup> sights into emulating real-world behavior, enhancing the applicability and relevance of the findings. <sup>651</sup>

#### ACKNOWLEDGEMENTS

Abhigna Bhatt and Arnab Banerjee acknowledge the Inspire faculty grant, grant number: DST/ IN-SPIRE/04/2018/000052, for partially supporting the research.

#### Appendix A: Multiple spatial scales approach

The nonlinear partial differential equation, as shown in Eq. (4), involves the independent variables x and t, which correspond to the spatial and temporal dimensions, respectively. By employing a multiscale method, additional scales are introduced to account for long spatial scales, defined as  $X_1 = \epsilon x$ , which augment the original spatial scale  $X_0 = x$ . Consequently, the spatial derivatives can be expressed as

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial X_0} + \epsilon \frac{\partial}{\partial X_1} \tag{A1}$$

Further, the solution can be obtained as

$$w(x,t,\epsilon) = \sum_{n=0}^{1} \epsilon^n w_n \left( X_0, X_1, t \right) + O(\epsilon)$$
 (A2)

By substituting the solution given in Eq. (A2) into the partial differential equation given in Eq. (4) and employing the spatial derivatives provided in Eq. (A1), the governing partial differential equation can be expressed through the consolidation of terms with similar powers of  $\epsilon$  as.

$$R_0 + R_1 \epsilon + O(\epsilon^2) = 0 \tag{A3}$$

where

$$R_{0} : \frac{\partial^{4} w_{0}}{\partial X_{0}^{4}} + \frac{\partial^{2} w_{0}}{\partial t^{2}} + k_{1} w_{0} = 0$$

$$R_{1} : \frac{\partial^{4} w_{1}}{\partial X_{0}^{4}} + 4 \frac{\partial^{4} w_{0}}{\partial X_{1} \partial X_{0}^{3}} + \frac{\partial^{2} w_{1}}{\partial t^{2}} + k_{1} w_{1}$$

$$+ c_{1} \frac{\partial w_{0}}{\partial t} + c_{2} \frac{\partial^{5} w_{0}}{\partial t \partial X_{0}^{4}} + k_{3} w_{0}^{3} = 0$$
(A5)

The solutions  $w_0$ , and  $w_1$  can be obtained by solving equations  $R_0 = 0$  and  $R_1 = 0$  in progression.

In the case of flexural wave solution in infinite structure, the boundary complexities can be ignored and the plane wave solution can be assumed for the equation  $R_0 = 0$ .

$$w_0 = A(X_1) e^{i(\kappa X_0 - \omega t)} + \bar{A}(X_1) e^{-i(\kappa X_0 - \omega t)}$$
(A6)

Substituting Eq. (A6) in Eq. (A4) the dispersion relation for the linear system can be derived as

$$\kappa^4 - \omega^2 + k_1 = 0 \tag{A7}$$

Further, substituting Eq. (A6) in Eq. (A5), the following 685 equation can be obtained

$$\frac{\partial^{2} w_{1}}{\partial t^{2}} + \frac{\partial^{4} w_{1}}{\partial X_{0}^{4}} + k_{1} w_{1}$$

$$= \left(4i\kappa^{3} \frac{\partial A}{\partial X_{1}} + ic_{1}\omega A + ic_{2}\kappa^{4}\omega A - 3k_{3}A^{2}\bar{A}\right) e^{i(\kappa X_{0} - \omega t)^{688}}$$

$$- k_{3}A^{3}e^{i(3\kappa X_{0} - 3\omega t)} + cc$$
(A8)<sub>689</sub>

The particular solution of Eq. (A8) contains secular 657 terms which lead to nonuniform expansion in scaled<sub>690</sub> 658 time. Since the linear operator  $\left(\frac{\partial^2}{\partial t^2} + \frac{\partial^4}{\partial X_0^4} + k_1\right)$  is self-659 adjoint, as demonstrated in the appendix A, the solv-660 ability condition for eliminating secular terms can be de-661 rived. This condition is obtained by equating the forc-662 ing terms responsible for generating the secular terms  $^{692}\,$ 663 to zero, which leads to the following partial differential  $^{693}$ equation governing the amplitude A. 665

$$4i\kappa^{3} \frac{\partial A}{\partial X_{1}} + ic_{1}\omega A + ic_{2}\kappa^{4}\omega A - 3k_{3}A^{2}\bar{A} = 0$$

$$i\frac{\partial A}{\partial X_{1}} = -iA\left(\frac{c_{1} + c_{2}\kappa^{4}}{4\kappa^{3}}\right)\omega + \frac{3}{4\kappa^{3}}k_{3}A^{2}\bar{A} \qquad (A9)_{698}$$

666

667

676

677

680

683

The solution of A in polar form can be assumed as  $A = \frac{1}{2}a(X_1)\mathrm{e}^{\mathrm{i}\beta(X_1)}$ ,  $A = \frac{1}{2}a(X_1)\mathrm{e}^{-\mathrm{i}\beta(X_1)}$  and substitut-A = A = A = A = A the following equations can be obtained.

$$i\frac{1}{2}\left(e^{i\beta}\frac{\partial a}{\partial X_1} + ie^{i\beta}a\frac{\partial \beta}{\partial X_1}\right)$$

$$= -i\left(\frac{c_1 + c_2\kappa^4}{4\kappa^3}\right)\omega\frac{a}{2}e^{i\beta} + \frac{3}{4\kappa^3}k_3e^{i\beta}\frac{a^3}{8} \qquad (A10)$$

Further separating the real and imaginary parts following equations can be obtained.

$$\frac{\partial a}{\partial X_1} = -\left(\frac{c_1 + c_2 \kappa^4}{4\kappa^3}\right) \omega a \tag{A11}^{700}$$

$$\frac{\partial \beta}{\partial X_1} = -\frac{3}{16\kappa^3} k_3 a^2 \tag{A12}_{709}$$

The amplitude modulation can be obtained by solving 710 Eq. (A11) as

$$a = a_0 e^{-\left(\frac{c_1 + c_2 \kappa^4}{2\kappa^3}\right) \omega X_1}$$
(A13)<sup>713</sup>

Further, the wave number shift can be obtained by substituting Eq. (A13) into Eq. (A12) as follows.

$$\frac{\partial \beta}{\partial X_1} = -\frac{3}{16\kappa^3} k_3 a_0^2 e^{-\left(\frac{c_1 + c_2 \kappa^4}{2\kappa^3}\right)\omega X_1}$$

$$\beta = \frac{3}{8} \frac{k_3 a_0^2 \omega^{-1}}{(c_1 + c_2 \kappa^4)} e^{-\left(\frac{c_1 + c_2 \kappa^4}{2\kappa^3}\right) \omega X_1} + \beta_0$$
 (A14)<sub>717</sub>

Further, the initial condition has been assumed as at  $X_1=0, \beta=0$  and so,  $\beta_0=-\frac{3}{8}\frac{k_3a_0^2\omega^{-1}}{(c_1+c_2\kappa^4)}$ . The shift in frequency can be determined as

$$\beta = \frac{3}{8} \frac{k_3 a_0^2 \omega^{-1}}{(c_1 + c_2 \kappa^4)} e^{-\left(\frac{c_1 + c_2 \kappa^4}{2\kappa^3}\right) \omega X_1} - \frac{3}{8} \frac{k_3 a_0^2 \omega^{-1}}{(c_1 + c_2 \kappa^4)}$$

$$\beta = -\frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)} \left(1 - e^{-\left(\frac{c_1 + c_2 \kappa^4}{2\kappa^3}\right) \omega X_1}\right)$$

$$\beta = -\frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)} \left(1 - e^{-\left(\frac{c_1 + c_2 \kappa^4}{2\kappa^3}\right) \omega \epsilon x}\right)$$
(A15)

Using the Eq. (A15), the shift in wavenumber can be determined. However, to obtain the frequency shift the concept of group velocity in amplitude modulation equation has been used. Further, from differentiating the Eq. (A7) with propagation constant  $\kappa$  the group velocity  $(v_g = \frac{d\omega}{d\kappa})$  can be obtained as

$$4\kappa^{3} - 2\omega \frac{d\omega}{d\kappa} = 0$$

$$v_{g} = \frac{d\omega}{d\kappa} = \frac{2\kappa^{3}}{\omega}$$
(A16)

Now, by substituting Eq. (A16) into Eq. (A13) and Eq. (A15), and incorporating  $v_g = x/t$  the following equation can be determined

$$a = a_0 e^{-\left(c_1 + c_2 \kappa^4\right)\epsilon t} \tag{A17}$$

$$\beta = -\frac{3}{8} \frac{k_3 \omega^{-1} a_0^2}{(c_1 + c_2 \kappa^4)} \left( 1 - e^{-(c_1 + c_2 \kappa^4)\epsilon t} \right)$$
 (A18)

Equations A17 and A18 match exactly with the solutions obtained using temporal multiscales in Eqs. 19 and 21. Thus, it can concluded that both temporal and spatial methods of multiple scales can be used to determine nonlinear frequency shifts.

#### Appendix B: Proof of self ad-joint operator

To prove the left-hand side of Eq. (14)  $\left(\frac{\partial^2}{\partial T_0^2} + \frac{\partial^4}{\partial x^4} + k_1\right)$  self adjoined, first the variable separation method has been used to get two separate ordinary differential equations (ODE) as follows. Let, the solution  $w(x, T_0) = f(x)g(T_0)$ 

$$\left(\frac{\partial^{2}}{\partial T_{0}^{2}} + \frac{\partial^{4}}{\partial x^{4}} + k_{1}\right) w(x, T_{0}) = 0$$

$$\left(\frac{\partial^{2}}{\partial T_{0}^{2}} + \frac{\partial^{4}}{\partial x^{4}} + k_{1}\right) f(x)g(T_{0}) = 0$$

$$f(x) \frac{d^{2}g(T_{0})}{dT_{0}^{2}} + G(T_{0}) \frac{d^{4}f(x)}{dx^{4}} + k_{1}f(x)g(T_{0}) = 0 \quad (B1)$$

dividing whole Eq. (B1) with  $f(x)g(T_0)$  as

$$\frac{1}{g(T_0)} \frac{d^2 g(T_0)}{d{T_0}^2} + \frac{1}{f(x)} \frac{d^4 f(x)}{dx^4} + k_1 = 0$$
 (B2)

Further,

719

721

723

724

727

728

729

730

731

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

$$\frac{1}{g(T_0)} \frac{d^2 g(T_0)}{dT_0^2} = -\frac{1}{f(x)} \frac{d^4 f(x)}{dx^4} - k_1 = \lambda$$
 (B3)<sup>734</sup>

following this two separate ODEs can be written as 722

$$\frac{d^2g(T_0)}{dT_0^2} - \lambda g(T_0) = 0 (B4)_{736}$$

$$\frac{d^4 f(x)}{dx^4} + (k_1 + \lambda) f(x) = 0$$
 (B5)

The eigenvalue problem to solve is Eq. (B5) and the  $^{737}_{738}$ 725 Linear operator in is  $\left(L = \frac{d^4}{dx^4}\right)$ . Operator L can be<sub>739</sub> called self ad-joint if inner products  $\langle Lu, v \rangle = \langle u, Lv \rangle$ .

$$\langle Lu, v \rangle = \int_{a}^{b} \left(\frac{d^{4}u(x)}{dx^{4}}\right) v(x) dx$$

$$= \left[\frac{d^{3}u(x)}{dx^{3}}v(x)\right]_{a}^{b} - \int_{a}^{b} \frac{d^{3}u(x)}{dx^{3}} \frac{dv(x)}{dx} dx \quad (B6)$$

$$= \left[\frac{d^{3}u(x)}{dx^{3}}v(x)\right]_{a}^{b} + \left[\frac{d^{2}u(x)}{dx^{2}} \frac{dv(x)}{dx}\right]_{a}^{b}$$

$$= \left[\frac{d^{3}u(x)}{dx^{3}}v(x)\right]_{a}^{b} + \left[\frac{d^{2}u(x)}{dx^{2}} \frac{dv(x)}{dx}\right]_{a}^{b}$$

$$- \int_{a}^{b} \frac{d^{2}u(x)}{dx^{2}} \frac{d^{2}v(x)}{dx^{2}} dx \quad (B7)^{744} \quad \text{Hence, It can be said that the}$$

$$\left(\frac{\partial^{2}u(x)}{\partial x^{2}} + \frac{\partial^{4}u(x)}{\partial x^{$$

Further,

$$\langle u, Lv \rangle = \int_a^b u(x) \left( \frac{d^4 v(x)}{dx^4} \right) dx$$
(B8)  

$$= \left[ \frac{d^3 v(x)}{dx^3} u(x) \right]_a^b - \int_a^b \frac{d^3 v(x)}{dx^3} \frac{du(x)}{dx} dx$$
(B9)  

$$= \left[ \frac{d^3 v(x)}{dx^3} u(x) \right]_a^b + \left[ \frac{d^2 v(x)}{dx^2} \frac{du(x)}{dx} \right]_a^b$$
  

$$- \int_a^b \frac{d^2 v(x)}{dx^2} \frac{d^2 u(x)}{dx^2} dx$$
(B10)

After applying appropriate boundary conditions the Eq. (B7) and Eq. (B10) can be proved to be the same. For brevity in the case of the simply supported beam, the boundary conditions u(a) = 0, v(a) = 0, u(b) = 0, and v(b) = 0 can be substituted in the Eq. (B7) and Eq. (B10). The inner product is:

$$\langle Lu, v \rangle = \langle u, Lv \rangle = -\int_a^b \frac{d^2u(x)}{dx^2} \frac{d^2v(x)}{dx^2} dx$$
 (B11)

(B7)<sup>744</sup> Hence, It can be said that  $\left(\frac{\partial^2}{\partial T_0^2} + \frac{\partial^4}{\partial x^4} + k_1\right)$  is self adjoined. operator

- [1] Sun, H., Zhang, S. & Shui, X. A tunable acoustic diode771 made by a metal plate with periodical structure. Applied772 Physics Letters. **100** (2012)
- Zhou, D., Ma, J., Sun, K., Gonella, S. & Mao, X. Switch-774 able phonon diodes using nonlinear topological Maxwell<sub>775</sub> lattices. Physical Review B. 101, 104106 (2020)
- [3] Li, F., Anzel, P., Yang, J., Kevrekidis, P. & Daraio, C.777 Granular acoustic switches and logic elements. Nature778 Communications. **5**, 5311 (2014)
- Jensen, J. Phononic band gaps and vibrations in one-780 and two-dimensional mass-spring structures. Journal Of781 Sound And Vibration. 266, 1053-1078 (2003)
- Narisetti, R., Leamy, M. & Ruzzene, M. A perturba-783 tion approach for predicting wave propagation in one-784 dimensional nonlinear periodic structures. Journal Of Vi-785 bration And Acoustics. **132**, 31001 (2010)
- Xu, X., Barnhart, M., Fang, X., Wen, J., Chen, Y. &787 Huang, G. A nonlinear dissipative elastic metamaterial 788 for broadband wave mitigation. International Journal Of789 Mechanical Sciences. **164** pp. 105159 (2019)
- Gong, C., Fang, X. & Cheng, L. Band degeneration and 791 evolution in nonlinear triatomic metamaterials. Nonlin-792 ear Dynamics. 111, 97-112 (2023)
- Campana, M., Ouisse, M., Sadoulet-Reboul, E., Ruzzene,794 M., Neild, S. & Scarpa, F. Impact of non-linear res-

- onators in periodic structures using a perturbation approach. Mechanical Systems And Signal Processing. 135 pp. 106408 (2020)
- Wu, K., Hu, H. & Wang, L. Nonlinear elastic waves in a chain type of metastructure: theoretical analysis and parametric optimization. Nonlinear Dynamics. 111, 11729-11751 (2023)
- [10] Silva, P., Leamy, M., Geers, M. & Kouznetsova, V. Emergent subharmonic band gaps in nonlinear locally resonant metamaterials induced by autoparametric resonance. Physical Review E. 99, 063003 (2019)
- [11] Sepehri, S., Mashhadi, M. & Fakhrabadi, M. Nonlinear nonlocal phononic crystals with roton-like behavior. Nonlinear Dynamics. 111, 8591-8610 (2023)
- Bae, M. & Oh, J. Amplitude-induced bandgap: New type of bandgap for nonlinear elastic metamaterials. Journal Of The Mechanics And Physics Of Solids.  ${\bf 139}$  pp. 103930(2020)
- [13] Jiao, W. & Gonella, S. Doubly nonlinear waveguides with self-switching functionality selection capabilities. Physical Review E. 99, 042206 (2019)
- Fang, X., Wen, J., Yu, D. & Yin, J. Bridging-coupling band gaps in nonlinear acoustic metamaterials. Physical Review Applied. 10, 054049 (2018)

[15] Nayfeh, A. & Mook, D. Nonlinear oscillations. (John Wi-859 ley & Sons, 2008)

795 796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

845

846

847

848

849

850

851

852

853

854

855

856

857

858

- [16] Nayfeh, A. Perturbation methods. (John Wiley &sons, 2008)
- [17] Marathe, A. & Chatterjee, A. Wave attenuation in non-863 linear periodic structures using harmonic balance and 864 multiple scales. *Journal Of Sound And Vibration*. 289,865 871-888 (2006)
- [18] Sepehri, S., Mashhadi, M. & Fakhrabadi, M. Wave prop-867 agation in fractionally damped nonlinear phononic crys-868 tals. *Nonlinear Dynamics.* 110, 1683-1708 (2022)
- [19] Sepehri, S., Mashhadi, M. & Fakhrabadi, M. Wave prop-870 agation in nonlinear monoatomic chains with linear and 871 quadratic damping. *Nonlinear Dynamics*. pp. 1-22 (2022)872
- [20] Liu, M. & Zhou, F. Spectro-spatial analysis of elastics73 wave propagation in nonlinear elastic metamaterial sys-874 tems with damping. Chaos: An Interdisciplinary Journals75 Of Nonlinear Science. 32 (2022)
- [21] Xia, Y., Ruzzene, M. & Erturk, A. Bistable attachments<sup>877</sup> for wideband nonlinear vibration attenuation in a meta-<sup>878</sup> material beam. *Nonlinear Dynamics*. **102** pp. 1285-1296<sup>879</sup> (2020)
- [22] Kurt, M., Eriten, M., McFarland, D., Bergman, L. &881 Vakakis, A. Strongly nonlinear beats in the dynamics of882 an elastic system with a strong local stiffness nonlinear-883 ity: Analysis and identification. *Journal Of Sound And*884 *Vibration.* 333, 2054-2072 (2014)
- [23] Herrera, C., McFarland, D., Bergman, L. & Vakakis,886
   A. Methodology for nonlinear quantification of a flexi-887
   ble beam with a local, strong nonlinearity. *Journal Offses Sound And Vibration*. 388 pp. 298-314 (2017)
- [24] Zhao, B., Thomsen, H., Pu, X., Fang, S., Lai, Z., Vansso Damme, B., Bergamini, A., Chatzi, E. & Colombi, A.ssı A nonlinear damped metamaterial: Wideband attenua-ssz tion with nonlinear bandgap and modal dissipation. *Me-sss chanical Systems And Signal Processing.* **208** pp. 111079ss4 (2024)
- [25] Casalotti, A., El-Borgi, S. & Lacarbonara, W. Metamate-896 rial beam with embedded nonlinear vibration absorbers.897 International Journal Of Non-Linear Mechanics. 98 pp.898 32-42 (2018)
- [26] Askari, H. & Esmailzadeh, E. Chaotic and periodic vibra-900 tion of a carbon nanotube supported by nonlinear foun-901 dation. 14th IEEE International Conference On Nan-902 otechnology. pp. 632-635 (2014)
- Read [27] Norouzi, H. & Younesian, D. Chaotic vibrations of beams<sup>904</sup> on nonlinear elastic foundations subjected to reciprocat-<sup>905</sup> ing loads. *Mechanics Research Communications*. **69** pp.<sup>906</sup> 121-128 (2015)
  - [28] Zang, J., Cao, R. & Zhang, Y. Steady-state responses of a viscoelastic beam with asymmetric elastic supports coupled to a lever-type nonlinear energy sink. Nonlinear Dynamics. 105 pp. 1327-1341 (2021)
  - [29] Khajehtourian, R. & I., H. Dispersion characteristics of 912 a nonlinear elastic metamaterial. AIP Advances. 4 pp.913 124308 (2014)
  - [30] Manktelow, K., Leamy, M. & Ruzzene, M. Comparison of 915 asymptotic and transfer matrix approaches for evaluating 916 intensity-dependent dispersion in nonlinear photonic and 917 phononic crystals. Wave Motion. 50, 494-508 (2013) 918
  - [31] Wang, K., Zhou, J., Xu, D. & Ouyang, H. Lower band<sup>919</sup> gaps of longitudinal wave in a one-dimensional periodic<sup>920</sup> rod by exploiting geometrical nonlinearity. *Mechanical*<sup>921</sup> Systems And Signal Processing. **124** pp. 664-678 (2019) <sup>922</sup>

- [32] Zhou, J., Dou, L., Wang, K., Xu, D. & Ouyang, H. A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. *Non-linear Dynamics*. 96 pp. 647-665 (2019)
- [33] Shen, Y. & Lacarbonara, W. Nonlinear dispersion properties of metamaterial beams hosting nonlinear resonators and stop band optimization. *Mechanical Systems* And Signal Processing. 187 pp. 109920 (2023)
- [34] Fronk, M., Fang, L., Packo, P. & Leamy, M. Elastic wave propagation in weakly nonlinear media and metamaterials: a review of recent developments. *Nonlinear Dynam*ics. 111, 10709-10741 (2023)
- [35] Chen, Z., Wang, G., Zhou, W. & Lim, C. Elastic foundation induced wide bandgaps for actively-tuned topologically protected wave propagation in phononic crystal beams. *International Journal Of Mechanical Sciences*. 194 pp. 106215 (2021)
- [36] Bae, M. & Oh, J. Nonlinear elastic metamaterial for tunable bandgap at quasi-static frequency. *Mechanical Sys*tems And Signal Processing. 170 pp. 108832 (2022)
- [37] Bera, K. & Banerjee, A. A consistent dynamic stiffness matrix for flutter analysis of bridge decks. Computers & Structures. 286 pp. 107107 (2023)
- [38] Burlon, A. & Failla, G. On the band gap formation in locally-resonant metamaterial thin-walled beams. European Journal Of Mechanics-A/Solids. 97 pp. 104798 (2023)
- [39] Cheng, X., Bergman, L., McFarland, D., Tan, C., Vakakis, A. & Lu, H. Co-existing complexity-induced traveling wave transmission and vibration localization in Euler-Bernoulli beams. *Journal Of Sound And Vibration*. 458 pp. 22-43 (2019)
- [40] Bathe, K. Finite element procedures. (Klaus-Jurgen Bathe, 2006)
- [41] Fronk, M. & Leamy, M. Higher-order dispersion, stability, and waveform invariance in nonlinear monoatomic and diatomic systems. *Journal Of Vibration And Acoustics*. 139, 051003 (2017)
- [42] Bonanomi, L., Theocharis, G. & Daraio, C. Wave propagation in granular chains with local resonances. *Physical Review E.* 91, 033208 (2015)
- [43] Deng, B., Tournat, V. & Bertoldi, K. Effect of predeformation on the propagation of vector solitons in flexible mechanical metamaterials. *Physical Review E.* 98, 053001 (2018)
- [44] Sánchez-Morcillo, V., Pérez-Arjona, I., Romero-García, V., Tournat, V. & Gusev, V. Second-harmonic generation for dispersive elastic waves in a discrete granular chain. *Physical Review E.* 88, 043203 (2013)
- [45] Wallen, S. & Haberman, M. Nonreciprocal wave phenomena in spring-mass chains with effective stiffness modulation induced by geometric nonlinearity. *Physical Review E.* 99, 013001 (2019)
- [46] Li, Q., Di Gialleonardo, E. & Corradi, R. Equivalent Models of an Infinite Track for Frequency and Time Domain Analyses. *Journal Of Vibration Engineering & Technologies*. pp. 1-23 (2024)
- [47] Nielsen, J. & Oscarsson, J. Simulation of dynamic train-track interaction with state-dependent track properties. *Journal Of Sound And Vibration*. 275, 515-532 (2004)
- [48] Koroma, S., Hussein, M. & Owen, J. Vibration of a beam on continuous elastic foundation with nonhomogeneous stiffness and damping under a harmonically excited mass.

- Journal Of Sound And Vibration. 333, 2571-2587 (2014)947
- [49] Hedayati, R. & Sadighi, M. A micromechanical approach<sub>948</sub> to numerical modeling of yielding of open-cell porous<sub>949</sub> structures under compressive loads. *Journal Of Theoret*<sub>-950</sub> *ical And Applied Mechanics.* **54**, 769-781 (2016)

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

- [50] Sadeghnejad, S., Taraz Jamshidi, Y., Mirzaeifar, R. &952 Sadighi, M. Modeling, characterization and parametric953 identification of low velocity impact behavior of time-954 dependent hyper-viscoelastic sandwich panels. Proceed-955 ings Of The Institution Of Mechanical Engineers, Part956 L: Journal Of Materials: Design And Applications. 233,957 622-636 (2019)
- [51] Zhang, X., Qiu, Y. & Griffin, M. Transmission of verti-959 cal vibration through a seat: Effect of thickness of foam960 cushions at the seat pan and the backrest. *International* 661 *Journal Of Industrial Ergonomics*. 48 pp. 36-45 (2015) 962
- [52] Gibson, L., Ashby, M. & Harley, B. Cellular materials in nature and medicine. (Cambridge University Press, 2010) 964
- [53] Ashby, M. Metal Foams: a design guide. (Butterworth-965 Heinemann College, 2000)
- [54] Ghazwani, M., Alnujaie, A., Youzera, H., Meftah, S. & 967 Tounsi, A. Nonlinear damping and forced vibration in-968 vestigation of three-layered viscoelastic sandwich beams969 on nonlinear elastic foundation with interlaminar contin-

- uous shear stress Zig–Zag theories.  $Acta\ Mechanica.\ 235, 3557-3571\ (2024)$
- [55] Zamani, H., Nourazar, S. & Aghdam, M. Largeamplitude vibration and buckling analysis of foam beams on nonlinear elastic foundations. *Mechanics Of Time-*Dependent Materials. 28, 363-380 (2024)
- [56] Sun, Y., Han, Q., Jiang, T. & Li, C. Coupled bandgap properties and wave attenuation in the piezoelectric metamaterial beam on periodic elastic foundation. Applied Mathematical Modelling. 125 pp. 293-310 (2024)
- [57] Chopra, A. Dynamics of structures. (Pearson Education India, 2007)
- [58] Zhou, D., Rocklin, D., Leamy, M. & Yao, Y. Topological invariant and anomalous edge modes of strongly nonlinear systems. *Nature Communications*. 13, 3379 (2022)
- [59] Ma, F., Tang, Z., Shi, X., Wu, Y., Yang, J., Zhou, D., Yao, Y. & Li, F. Nonlinear topological mechanics in elliptically geared isostatic metamaterials. *Physical Review Letters*. 131, 046101 (2023)
- [60] Banerjee, A. & Bera, K. Wave propagation in mass-inmass Duffing type non-linear metamaterial implementing Jacobi's elliptic balance method. *International Journal* Of Non-Linear Mechanics. 157 pp. 104549 (2023)