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Wave dispersion in a damped beam supported by cubic nonlinear springs: A
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Researchers are drawn to exploring wave dispersion in nonlinear systems because of the amplitude-
dependent tunability of the bandgap. This paper investigates the amplitude-dependent wave dis-
persion in continuous beam structures supported periodically by nonlinear springs. Additionally, it
examines the influence of inherent beam damping on wave dispersion. The analytical framework
consists of homogenization of the unit cell and the method of multiple scales with two distinct
time scales to derive the wave dispersion equation. The proposed analytical approach for non-
linear wave propagation is validated through numerical finite element simulations. It is observed
that the frequency shift is positive for hardening and negative for softening supports. Following
this, the dispersion shift over time in the damped systems is examined by considering viscous and
strain rate-dependent damping. The sensitivity of strain rate damping to propagation constant and
the independence of viscous damping from propagation constant are thoroughly investigated. In a
damped system, the frequency shift diminishes over time as the amplitude decreases reducing the
effect of nonlinearity. This study opens up avenues for controlling or filtering vibrations through
the tunable bandgap of continuous nonlinear metamaterials.

Keywords: Homogenisation, Method of multiple scales, Frequency shift, Amplitude modulation, Amplitude

dependant dispersion

I. INTRODUCTION 48

49

Over the past decade, wave dispersion in linear meta- %
materials has garnered considerable attention from re- °
searchers due to its complex dispersion patterns, filtering
capabilities, and the emergence of frequency bandgaps.
The presence of nonlinearities within these systems has *
further piqued the interest of the engineering commu- %
nity, revealing fascinating phenomena such as amplitude-
dependent dispersion and alterations in group velocity
with weak nonlinear effects, as well as the propagation of
solitary waves like solitons under strong nonlinear condi- *
tions. This exploration of wave propagation in nonlinear ®
metamaterial has led to the proposal of various engineer- %
ing applications, including diodes [1, 2], switches [3], and
filters [4]. 6

Several recent studies have analyzed amplitude-*
dependent dispersion in discrete nondispersive systems %
such as monoatomic and diatomic chains with cubic non- *
linearity using perturbation method [5], nonlinear tri- *
atomic metamaterial [6, 7], monoatomic chain with non- *
linear embedded resonator [8], nonlinear monoatomic *

chain with embedded resonator[9, 42], nonlinear ro- ™
71
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ton like chain[11] etc. Additionally. nonlinear be-
havior such as amplitude-induced bandgap[10, 12], self-
switching functionality [13], bridging coupling mecha-
nism [14], band tunability [43] and nonreciprocity [44, 45]
etc has been observed in variety of discrete systems.
Different analytical methods such as Lindstedt—Poincaré
perturbation technique, method of multiscale, harmonic
balance method, method of averaging, Jacobi’s elliptic
balance method [60] etc [15, 16] have been used in deriv-
ing analytical solutions of the nonlinear dynamic systems
in the past. However, the method of multiple scales is
well suited for the damped system as it solves for ampli-
tude modulation [17-20]. In the case of nonlinear contin-
uous systems, researchers generally tackle finite systems
and obtain frequency response function [21-28]. In non-
linear continuum elastic media with topological mechan-
ics the method of multiple scales is widely used [58, 59].
In the case of continuous infinite structures, the nonlin-
ear dispersion shift is obtained for a few systems such
as a bar with periodically embedded resonators [29-31],
beam with periodic resonators [32, 33] etc. The quasi-
static wide bandgap can be induced by a beam on an
elastic foundation for linear systems [35]. Additionally
by incorporating nonlinear supports, the tunable quasi-
static bandgap can be obtained [36]. This has motivated
us to study the amplitude-dependent wave dispersion in
infinite long periodically supported damped beams.

An infinite beam with damping and nonlinear sup-
ports has numerous practical applications. For instance,
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railway tracks can be modeled as infinitely long Euler-:
Bernoulli beams resting on nonlinear spring-dashpot sys-
tems, making the study of flexural wave propagation es-,
sential for the analysis, design, and health monitoring of,
railway infrastructure [46-48]. Additionally, functionally
graded foams, which can be modeled as beams supported
by nonlinear springs with damping [55], are widely used"
in various fields. These include acoustic control [53],
shock and energy absorption [49, 50], as well as appli-1
cations in the automotive industry [51] and biomedical
instruments [52]. Furthermore, beams on periodic elastict
foundations are key for achieving wider bandgap regionst
and stronger attenuation capabilities [56], enhancing pas-
sive vibration control [54] and other advanced engineer-
ing solutions. 1

Historically, researchers have directed their attention®
towards both nonlinear and linear wave propagation?
within discrete metamaterials, while investigations into?
wave propagation in continuous metamaterials have pri-!
marily focused on linear systems. Concerning nonlinear
continuous systems, researchers have primarily explored,
frequency response functions within various finite sys-
tems, leaving a limited examination of wave propagation
within continuous beam systems incorporating nonlinear-
ity [34]. )

To address this gap, the study delves into the
amplitude-dependent, time-varying dispersion relation of
a damped beam supported by nonlinear springs. Specifi-
cally, it explores the wave dispersion relation of a damped
beam supported by periodic nonlinear structures, con-
sidering two types of damping—rviscous and strain rate!
damping—alongside both softening and hardening cubic,
nonlinearity. Employing a multiscale method with two
distinct time scales, the study analytically derives the
wave dispersion equation. The accuracy of the analytical;
solution is confirmed through comparison with numerical
results. Initially, the paper discusses the frequency shift,
in undamped systems affected by hardening and soften-,
ing nonlinearities. Subsequently, it examines the disper-
sion shift over time in damped systems, distinguishing
between viscous and strain rate damping. The sensitiv-
ity of strain rate damping to propagation constants and1
the independence of viscous damping from propagation
constants are thoroughly investigated. In summary, the
paper extensively explores the amplitude-dependent non-
linear dispersion in infinitely long damped beams period-*
ically supported by nonlinear springs. These are vital for'
modeling railway tracks, functionally graded foams, and*
enhancing passive vibration control in various engineer-'
ing applications. !

1!

1
1

1

II. METHODOLOGY

1

1
Considering the flexural wave propagation in infinitely,

long Euler Bernoulli beam supported by cubic nonlinear
springs as depicted in Fig. 1(a), the following analytical,
formulation is derived.
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A. Governing equation

The governing equation of motion of the representative
unit cell shown in Fig. 1(b) can be written as [37]:

0? 9w Pw 8w
92 (Efaxz +Ca 6302875) T 5e

ow ~ ~ g
+Cua+(k1w+k3w>5(x)—0 (1)

where, E'I = flexural rigidity, Cs = strain rate-dependent
damping, C, = velocity-dependent viscous damping, p =
density, A = cross-section area, ki and ks are liner and
nonlinear spring stiffness, w denotes transverse deflec-
tion, x = distance, and t represents time. Further, the
Dirac delta function was approximated using a homoge-
nization approach in which the stiffness of the spring was
scaled down by the inverse of the length of the unit cell
(1/1) as [38].

0? 0%w Pw 0w
— | FI— 4+ C, A
027 ( 92 + 8x28t> MG
0 1/~ ~
+C’afw+*</€1w+k‘3w3)=0 (2)
ot 1
Further, the governing equation can be written as
0w 5 0w ow OPw
— — +k — ——— tkzw® =0
gz gy TR gy ey gy TR
(3)
where, w2 = %,cl = %,CQ = %Z, ki = ﬁk] and k3 =
-
pai ks

B. Multiple scales Method

The nonlinear governing equation given in Eq. (3) has
been solved using the method of multiple scales by intro-
ducing the scaling parameter ¢ with damping and non-
linear terms as:
0w 5 0w

o2z T n g

Ow

+kiw+ 087w+67
O\ o T P oatan

+ ks w3) =0
(4)

The nonlinear partial differential equation, as pre-
sented in Eq. (4), involves independent variables = and
t corresponding to spatial and temporal dimensions, re-
spectively. The method of multiple scales can be applied
by employing slow time scales or large space scales. Here,
by employing a multiscale approach, additional scales are
introduced to account for slow time scale, denoted as

Ty = et. These augment the original scales for time
Ty = t. Another way of the multiple scales method
by employing spatial expansion is demonstrated in Ap-
pendix A. The time derivatives can be written as

0 0 0

Z_ Y .2 5

ot~ aT, T “om, 5)
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FIG. 1. (a) The Euler Bernoulli beam periodically supported by nonlinear springs (b) The representative unit cell
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i1 Further, the solution can be obtained as e Eq. (9) expands the nonlinear equation of motion in

) 105 orders of (¢), matching it to the zeroth order and first

_ n s order in (€). The solutions wy, and wy can be obtained

" (@:t,€) Z €"wn (@, To,Th) + O(€) (6)197 by solving equations Ry = 0 and R; = 0 in progression.
n=0 . P .

198 In the case of flexural wave solution in infinite struc-

s By substituting the solution given in Eq. (6) into thews ture, the boundary complexities can be ignored and the
we  partial differential equation (Eq. (4)) and employing thexe plane wave solution can be assumed for the equation

s temporal derivatives provided in Eq. (5), yields o Ry =0 as [39].
2 2 2 . _ .
(a = +Qa(; o7, ) LA wo = A(T1) =) 4 A(Ty) e (wemwTo)  (12)
o1y 1010 o1y
82w 8w, 92 84w1 Substituting Eq. (12) in Eq. (10) the dispersion relation
w4+ (2 IT.OT + o7 2) + a1, + ( B 3:1:4 >z for the linear system can be derived as
1010 0
awl 8w1 8w0 ,‘14 — w2 =+ ]{1 =0 (13)
L 2
v (o ¥ ewn) + e (6T0 Ty e <8T0 Ty L ) .
5 95 Pw Further, substituting Eq. (12) in Eq. (11), the following
o dcoe Wi 0”wo + equation can be obtained
(9 46T1 8$48T0 33348T1 61‘48T0
0? o
180 +€l€3 (UJO +€w1) = (7)208 8Tw21 + 6w1 + kqwn
0
11 Further, collecting terms with a similar power of €, the A N
12 following equation can be written. w0 = 2iw—— +icwA + icok*wA — 3 k3A2A el(rz—wTh)
oTy
2 4
183 9w 7 + aaujko + krwo 0 = kg ARG g e (14)
T2
92 w 82w &y au The particular solution of Eq. (14) contains secular terms
184 ( o972 8T1 aT, + p + k1 wl) 212 which lead to nonuniform expansion in scaled time. Since
0

o Pwy a3 the linear operator (%22 + 8‘9—; + kl) is self-adjoint, as
185 +e (ClaTo O v 92401, + kgwo' ) +0(e%) = (8)2  demonstrated in the Appendix B, the solvability condi-

215 tion for eliminating secular terms can be derived. This
18 The governing partial differential equations can be ex-2s condition is obtained by equating the forcing terms re-
157 pressed through the consolidation of terms with similaraz  sponsible for generating the secular terms to zero, which

188 powers of € as. a8 leads to the following partial differential equation gov-
9 219 erning the amplitude A.
189 R0+R1€+O(€ ) =0 (9)
10 where 0A
) 4 220 Qw—— + iciwA + icorwA — 3k A%A =

0 Wo 0 Wo 8T1
101 Ry Tem T T kiwg =0 (10) 4

T, O 0A . (ctck S —1427%

21 i— =—iA| ———— | + s ksw™ A%A (15)

0%w 0%wy O*wq oIy 2 2
102 Ry : + 2 T 0T, + G + kqwn

Ty’ 1750 v 2 The solution of amplitude A in polar form can be as-
o Yol dwy + e & wo ¥ kgwo® = 0 (1™ sumed as A = 3a(T1)e”™) and its complex conjugate,

0Ty 0x40Ty B m A= %a(Tl)e_i*B(Tl). Further, the frequency shift due to
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nonlinearity will be later demonstrated and reflected byass
the complex-valued phase of amplitude modulation. As
the phase /3 is a function of slow time scale (17) it essen-
tially captures the frequency shift due to nonlinearity.
To determine the phase, by substituting the amplitude
A and A into Eq. (15) the following equations can be®

obtained. 261
1[5 0 08
o LB 70’ s a8, Y 263
12 <e oy +1e a8T1) "
1+ ekt a 3 4 g 265
= —1 <2> 56 p + 5 kgw 1 € Bg (16)266
267
Further separating the real and imaginary parts followingaes
equations can be obtained. 269
4 270
ﬁ [ M a (]_7)271
o1y 2
op 3. 12
- = __ k 18)272
or, 8 ¥ ¢ (18)

The amplitude modulation can be obtained by solving,,,
Eq. (17) as
274
_( eateas® \
0= ae (ZET (19)”"
Further, the frequency shift can be obtained by substi-27
tuting Eq. (19) into Eq. (18) as follows.

op

or, 8
3 kSw_la(z) 7(61+62I€4)T1
EEICETTON + fo

3 4 278
_ Y k3w—1a%e—(cl+czﬁ )Tl

279

(20)280

281
Further, the initial condition has been assumed as at?®?

_ _ o 3 ksw ™ ta? . . 283
T1 = O,/B =0 and SO, /60 = 7§m The shift 111284

frequency can be determined as -

6 — § k;?)w_la(% e—(01+02r€4)T1 _ § kj?’w_lag
8 (c1 + c2KY)

8 (c1 + cak?)
'ag (1 . ef(cl+62ﬁ4>T1) (21)

286
3 kswlag

8 (c1 + cok?)

287

The wave solution can be written by substituting ampli-***
tude Eq. (19) and frequency shift Eq. (21) into Eq. (12)**
290

as
201

c (e )i4
ag 7(%)7—‘1 202
wyg = —¢€
2 203
—142 —|c c K,4
—i%%(l—e ( 1+e2 )TI)T1 i(kz—wTo) .
e cq+egrd)Ty en1w0+cc
(22)205
Further, substituting Ty =t and T; = et,
296
ao _(u1+;2'€4)6t
Wo = 9 € 207
_:3 kgwilag o (‘.1+(‘.2n4 et
'8 ey toand)e l—e ( ) t i(kx—wt) 298
e e +ec  (23)

The frequency shift can be written as
k3w_1a(2) (1 _ ef(cl+czn4)et)

(c1 4+ cor?)t (24)

+3
Ws =W+ <
8

To further clarify the frequency shift derived in Eq. (24),
it is important to highlight that the system’s nonlinear-
ity leads to an amplitude-dependent frequency shift. Ini-
tially, when t is small and the amplitude is large, the
nonlinearity induces a substantial frequency shift. As
time progresses and damping reduces the amplitude, the
corresponding frequency shift diminishes. This behavior
illustrates the direct correlation between the wave am-
plitude and the magnitude of the frequency shift in non-
linear systems. However, in the case of an undamped
system, substituting ¢; = ¢ = 0 in Eq. (15) following
frequency shift and wave solution can be obtained.

3k3ag
Sw

2
3kgag

8o )€ i(kao—
) el(nz wt)_|_cc

ws =w+ € (25)

wo = (1067( (26)
The amplitude-dependant dispersion relation of an un-
damped beam supported by nonlinear springs can be ob-
tained by squaring Eq. (25), substituting x* + k; at w?
and neglecting terms of €? as

3]433(13

2

Wi=k'4k +e (27)

Note that, the strength of cubic nonlinearity is generally

considered by factor II = % The method of mul-
tiple scales is applicable in the conservative bounds as
III| < 0.1 [41]. Moreover, when the system is damped,
the amplitude is always decreasing and is independent
of the strength of cubic nonlinearity as time progresses

which makes the system always stable [19].

C. Finite element modelling

A finite element formulation of the FEuler-Bernoulli
beam on nonlinear elastic springs has been developed for
numerical validation. A governing strong form equation
for a representative unit cell is derived as Eq. (4). Let,
w(z,t) = Y(x)q(t), where, q(t) = {usuf,uj,uj}"; u;
and u are displacement and slope at it" node at time
t. Further v (z) is shape function defined by Hermite
polynomial as ¢ (z) = [th1 12 3 4] where,

Py (z) = zld (22° — 3221+ 17)

Po(z) = zl?» (231 — 22°1 + 21?)

Ps(z) = zl?» (—22° + 32°1)

Ya(e) = 35 (5 — 271 (28)
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Employing the Galerkin method, the weak form of a
strong form equation given in Eq. (4) can be derived

301 as [40]
|
l w? l d2'l/JTd2’l/1
LA wde{]qu>+ %[ & dx2¢% ) + r(0)] a(t)
—— L
M K

+ dx?

dx?

l g2, T 2
ecl/ sz/de—f—ecQ/ d—w dwdxl
0 0

(t) + [eks(0)] a(t)® =0
—

(29)

C

The typical element mass matrix (M), stiffness matrixsss
(K), mass and stiffness proportional Rayleigh dampingss
matrix (C) [57], and the linear and nonlinear spring stiff-sr

ness matrices (L and N) for a single unit have been de-xs
rived as follows. 320
156 221 54 —131 3

L 220 412 131 312

4920 54 131 156 —-221
—131 —312 —22] 412 138

12 61 —12 61

oo 61 412 —61 2012 130
K=wi| Z12 Z61 12 —61 (30),,,
61 212 —61 412
342
156 2201 54 —131 u
_a [ 221 41 131 =30 4
T 420 54 131 156 —221
—131 =312 —221 412 346
12 61 —12 61 7
co | 61 412 —61 212 .
Bl —12 =61 12 —61 (31)sss
61 212 —61 412 30
351
kL 000 ks 000 2
0000 0000 %3
L=l 90000 |'N=|l 0000 (32)sse
0000 0000

356

Further, the global matrices ([],) have been obtained andss
the global equation of motion can be written as follows. sss
M, + Kgv + Lgv + € (Cgv + Ngv?) =0 (33).
where v is the global displacement vector. 361
362

363

III. RESULTS AND DISCUSSION

364
365

In this section, the proposed theory for nonlinear wavesss
propagation has been validated with the numerical solu-se
tion. Further, this section discusses the wave dispersionses

N

(

phenomena within both undamped and damped Euler-
Bernoulli beams supported by cubic nonlinearities, ex-
ploring both hardening and softening nonlinear behav-
iors. Additionally, it thoroughly examines the impact
of viscous damping and strain rate damping on damped
beams.

A. Numerical validation

The nonlinear dispersion relation can be derived us-
ing two approaches. The first is the free wave approach,
where the propagation constant (k) is fixed by apply-
ing harmonic initial condition, and the corresponding
frequency (w) is determined. Alternatively, the driven
wave approach fixes the frequency (w) through harmonic
boundary conditions, leading to the determination of
the propagation constant. However, in dispersive me-
dia, the boundary complexity decreases the amplitude of
harmonic boundary conditions in the far field, impact-
ing the amplitude-dependent dispersion. Consequently,
for the nonlinear dispersion relation of infinite continuous
beams, the free wave approach is preferable for numerical
validation.

The MATLAB ODE45 function has been used to ob-
tain the solution of the Eq. (33). For this, a very long
beam has been simulated for a long time to get accu-
rate fast Fourier transform (FFT) results but not so long
time that the boundary reflections affect the solution.
The FFT is calculated in both space and time to get
wavenumber (k) as well as frequency (w). According to
the free-wave approach, the frequency shift is obtained by
fixing the wavenumber by imposing the initial condition
as w(z,0) = Acos(kz), w'(x,0) = — Ak sin(kx).

For illustration purposes, the wave number x = 0.5
and the amplitude A = 1 are applied in the initial condi-
tion to the beam shown in Fig. 2(a). Furthermore, the
stiffness of the elastic springs is taken as ky = 1, k3 = —1
and € = 1 for the undamped system. In Fig. 2(b), the
displacement profile of the center portion of the beam
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FIG. 2. (a) The long Euler Bernoulli beam with ¢1 = ¢ = 0,k3 = —1,k1 = 1,A = 1,e¢ = 0.1, (b) Displacement contour of
the middle portion of the beam shown by the dashed box, (c¢) Displacement versus distance plot at different instances of time
shown in horizontal dashed lines with orange shades in (b), (d) Displacement versus time plot at different locations shown in
vertical dashed lines with violet shades in (b), () FFT plots corresponding to displacement profiles shown in (c), (f) FFT plots
corresponding to time histories shown in (d).

with respect to space and time is demonstrated. Fur-sn different times as shown by the horizontal dashed line in
ther, the beam displacement with respect to space atsz Fig. 2(b) are plotted in Fig. 2(c), and its FFT plots
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FIG. 3. (a) Displacement contour of the Euler Bernoulli beam with ¢; = c2 = 0.05,ks = 1,k1 = 1,A = 0.1,¢ = 1; (b)

Displacement versus time plot at different locations shown in

vertical dashed lines with violet shades in (a) where the solid

lines depict numerical solution and the dashed lines depict analytical solution, moreover the magnified plots are shown inside
to showcase the better validation in the initial time window and degraded validation in later time window; (c¢) Displacement
versus distance plot at different instances of time shown in horizontal dashed lines with orange shades in (a); (d) FFT plots

corresponding to displacement profiles shown in (c).

are plotted in Fig. 2(e) which shows peak amplitude atso
the wavenumber (x = 0.5) applied in the initial condi-se
tion. Furthermore, the beam displacement with respectsss
to time at different spaces located by vertical dashed linessss
as shown in Fig. 2(b) are plotted in Fig. 2(d), and itssr
FFT can be observed in Fig. 2(f). The peak amplitudess
frequency in Fig. 2(f) matches exactly with the analyt-s
ically obtained nonlinear frequency shown with a solidaw
blue line. As the nonlinearity is soft the frequency shiftsn
is negative which can be seen in the magnified plot in Fig.so
2(f), where the frequency of the linear system is shown byaos
a black dashed line. This validates the proposed theoryae.

of the free wave approach for an undamped system. 205

The damped system has been validated further in Fig.*®
3 with the following parameters: spring stiffness with*”
hard nonlinearity as k&1 = 1, k3 = 1, the damping factor*®
c1 = co = 1 and € = 1. In addition, the initial condition*®
is kept similar to the undamped case as the wave num-*°
ber k = 0.5 and the amplitude A = 1. The displacement
profile of the beam in space-time is illustrated in Fig.

3(a) which shows the decreases in amplitude as time pro-
gresses. However, the wavelength is constant as shown in
Fig. 3(c) in which the displacement is plotted at differ-
ent times shown by horizontal dashed lines in Fig. 3(a).
Further, its FFT is plotted in Fig. 3(d), which shows the
consistent wavenumber at different times. Furthermore,
the time histories at different locations shown by verti-
cal dashed lines in Fig. 3(a) are plotted in Fig. 3(b).
The decrease in amplitude due to damping reduces the
frequency shift with time, therefore instead of FFT of
time histories for validation, the analytical displacement
time histories are plotted with dashed lines to validate
the proposed theory for the damped system. In magni-
fied subplots of Fig. 3(b), the analytical and numerical
solution matches exactly in the initial phase (Fig. 3(b1))
however, they deviate in long time as shown in Fig. 3(b2)
as the analytical solution is valid till time inversely pro-
portional to the scaling factor (e) [16].
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node of the beam with k = 0.5, k3 = 1.

B. Undamped system e

437

438
This section presents an analysis of the dispersion re-,,,

lation of the nonlinear undamped system based on the,,
proposed analytical plane wave solution. Initially, the,,
influence of soft and hard nonlinearity on wave disper-,,,
sion is investigated, as illustrated in Fig. 4, considering,,,
nonlinear spring stiffness values of k3 = —1,0, and 1. An,,
amplitude of A = 1 and a scaling parameter of ¢ = 1 have,,,
been assumed. In Fig. 4(a), the dispersion plot is gener-,,,
ated by varying the propagation constant (k) from 0 to,,,
7 to obtain the frequency ws using Eq. (25). As the fre-,,
quency shift is inversely proportional to the frequency, It

can be noticed that frequency shift is higher at low prop-

agation constants and it diminishes at higher wavenum-,,,
bers. Subsequently, in Fig. 4(c-e), we display the dis-

placement contours for the free vibration of the beam for

k = 0.5. It is noteworthy that while the wave number
remains consistent across all three figures, the temporad451
frequency increases as the nonlinear spring stiffness esca-
lates. Similarly, in Fig. 4(f-h), we plot the response of the'”
midpoint of the beam. Additionally, the corresponding,,
phase portrait is depicted in Fig. 4(b), clearly illustrat-
ing the positive and negative shifts in frequency for the
hardening and softening systems, respectively, from theass
linear dispersion. 457
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FIG. 5. (a) Dispersion relation plot for the undamped sys-
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ment profile for x = 0.25, k3 = 1; (d) displacement profile for
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(f) Displacement time history at middle node of the beam
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placement time history at middle node of the beam with
k=1.75ks = 1.

Additionally, to analyze the impact of propagation
constant, three different propagation constants: k =
0.25,1, and 2 have been considered, for a nonlinear sys-
tem with hardening stiffness k3 = 1, as depicted in the
dispersion plot in Fig. 5(a). Furthermore, the displace-
ment profile of free vibration is illustrated using contour
plots in Fig. 5(c-e). The temporal response of the mid-
point of the beam is shown in Fig. 5(f-h), accompa-
nied by its corresponding phase portrait in Fig. 5(b).
It is evident from these analyses that as the propaga-
tion constant increases, the corresponding frequency also
increases, with the increment being minimal until prop-
agation constant x = 1.

C. Damped system

The effect of viscous damping and strain rate damping
along with system nonlinearity on wave dispersion has
been discussed in this section. The following three types
of systems have been discussed.

1. Viscous damping ¢; = 0.25 and Strain rate damp-
ing co =0

2. Viscous damping ¢; = 0 and Strain rate damping
ca =0.25
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3. Viscous damping ¢; = 0.25 and Strain rate damp-
ing co = 0.25 486
487
The dispersion relation plots of frequency (w) versus,g
propagation constant (k) are presented in Fig. 6(a, b,
and c) for the aforementioned configurations, represent-,,
ing only viscous damping, only strain rate damping, and,,
combined viscous and strain rate damping, respectively.,q,
Considering the time-dependent nature of frequency shift,q,
corresponding to propagation constants, the dispersion is,,,
visualized at multiple time instances ranging from 0 t0,.
100 seconds for both softening and hardening systems.,q,
The evolution of these plots reveals a transition from un-,,,
damped to linear system behavior over time. 108
Furthermore, the plots of frequency shift (Aw) ver-o
sus propagation constant (k) in Fig. 6(d-f) for all threesy
damping configurations highlight a decreasing trend insy
frequency shift with increasing time. Notably, for sys-se
tems with only strain rate damping (c3), the dampingse
effect is proportional to x*, resulting in a more rapid de-se.
cay for higher wavenumbers. Conversely, systems withses
viscous damping (c;1) exhibit a damping effect indepen-s
dent of wavenumber. In damped systems, nonlinear ef-s
fects tend to diminish with decaying amplitudes. 508
First, we investigate the influence of viscous dampingsos
on the behavior of a system under varying propagationsio
constants. Specifically, we focus on three distinct prop-su
agation constants, namely x = 0.50,1.00, and 1.50, ex-s.
amining the dynamics of frequency shift over time. Thiss:s
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FIG. 7. Damped nonlinear system with only viscous damp-
ing ¢1 = 0.25;¢2 = 0 and k1 = 1. (a), (b) and (c) shows
a frequency shift (Aw) versus time (¢) propagation constant
k= 0.50,1.00 and 1.50 respectively; (d), (e) and (f) show dis-
placement (wo) versus time (¢) at the middle node of beam
for propagation constant k£ = 0.50,1.00 and 1.50 respectively
and yellow dashed line is for amplitude envelope; (g), (h) and
(i) shows phase portraits for middle node of beam for propa-
gation constant k = 0.50,1.00 and 1.50 respectively.

analysis is presented through plots in Fig. 7 (a, b, and
c¢), where differentiating characteristics of damping ef-
fects are delineated for hardening (magenta line), soften-
ing (blue line), and linear (black line) systems. Our find-
ings reveal a convergence of frequency shifts to zero over
time across all propagation constants, indicating consis-
tent trends irrespective of the system’s nonlinearity. Fur-
thermore, the temporal evolution of displacement at the
beam’s middle node is depicted in Fig. 7 (d, e, and f)
for k = 0.50,1.00, and 1.50, respectively. In addition
to these plots, the amplitude modulation, represented by
the yellow dashed line, remains uniform across different
propagation constants and types of nonlinearity. Addi-
tionally, phase portraits are presented in Fig. 7 (g, h,
and i) for the same set of propagation constants. No-
tably, higher propagation constants correspond to higher
velocities, indicative of increased frequencies. Moreover,
the phase portraits elucidate distinct shifts from linear
frequency: positive for hardening and negative for soft-
ening nonlinear systems, underscoring characteristic non-
linear behaviors Additionally, we explore the impact of
strain rate damping on systems characterized by diverse
propagation constants. The damping factor correspond-
ing to strain rate damping is proportional to &%, so the
amplitude modulation varies with the propagation con-
stant. The temporal evolution of frequency shift is de-
picted in Fig. 8(a, b, and ¢) for propagation constants
x = 0.5,1.00, and 1.50, respectively. Notably, the rate
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and (i) shows phase portraits for the middle node of beam for
propagation constant x = 0.50,1.00 and 1.50 respectively.

of decrease in frequency shift varies significantly across
different propagation constants, being notably slower for
lower values of k£ and more rapid for higher values. Upon
examining the amplitude modulation for all three prop-"*
agation constants in Fig. 8(d, e, and f), it becomes™
apparent that the decay progresses at a relatively slow™
pace when s = 0.50, whereas it accelerates swiftly when™
x = 1.50. Similarly, the phase portraits presented in Fig.**
8(g, h, and i) for x = 0.5,1.00, and 1.50 reinforce these™
observations, providing further clarity on the relationship®
between propagation constants and damping effects. >

541

5

550
Furthermore, we examine the combined effect of bothss:
types of damping, as illustrated in Fig. 9. The plotsss
depicting frequency shift over time are presented in Fig.sss
9(a, b, and c) for propagation constants £ = 0.5,1.00,ss
and 1.50, respectively. Notably, the frequency shift grad-sss
ually diminishes over time, converging towards the fre-ss
quency of a linear system as time progresses. Addition-ss:
ally, the amplitude modulation shown in Fig. 9(d, e, andsss
f) elucidates the increase in decay rate with propagationsse
constant. In the lower range of propagation constants,seo
amplitude decay is primarily attributed to viscous damp-ss
ing, whereas in the higher range, it is predominantly duese.
to strain rate damping. To gain a clearer understand-ss
ing, phase portraits are depicted in Fig. 8(g, h, and i)sea
for k = 0.5, 1.00, and 1.50, respectively, reinforcing these
observations. 565
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FIG. 9. Damped nonlinear system with only viscous and
strain rate damping combine ¢; = 0.25;c2 = 0.25 and
k1 = 1. (a), (b) and (c) shows a frequency shift (Aw) ver-
sus time (t) propagation constant x = 0.50,1.00 and 1.50 re-
spectively; (d), (e) and (f) show displacement (wo) versus
time (¢) at the middle node of beam for propagation con-
stant £ = 0.50,1.00 and 1.50 respectively and yellow dashed
line is for amplitude envelope; (g), (h) and (i) shows phase
portraits for middle node of beam for propagation constant
x = 0.50,1.00 and 1.50 respectively.

IV. SUMMARY AND CONCLUSION

In this paper, the analytical closed-form dispersion re-
lation equation for a damped slender elastic beam peri-
odically supported by cubic nonlinear springs has been
derived. To derive the nonlinear dispersion relation, the
method of multiple scales is employed after introducing
a scaling parameter, €, to account for slow time scales.
Through this approach, the governing partial differential
equation is expanded and solved iteratively, leading to
expressions for complex amplitudes and frequency shifts.
The amplitude modulation and frequency shift equations
are derived as functions of damping coefficients and am-
plitude of the initial plane wave. The proposed theory
for nonlinear wave propagation was validated numeri-
cally through finite element formulation. Numerical sim-
ulations were carried out using the MATLAB ODE45
function. The results of numerical and analytical solu-
tions of the undamped and damped systems show con-
sistency which affirms the validity of the developed ana-
lytical closed-form solutions.

An extensive investigation into wave dispersion in non-
linear undamped systems was carried out using an ana-
lytical plane wave solution. The key findings are as fol-
lows:

e For a given propagation constant, there will be an
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amplitude-dependent shift in frequency. The posi-e
tive shift is observed for hardening springs and neg-

ative for softening springs. 615

616
e Since the frequency shift is inversely proportionals,,
to the frequency of the corresponding linear sys-gs

tem, nonlinearity has a greater impact at low prop-

agation constants or low frequencies and it reduces
with increasing propagation constants or frequen-sis

cies.

620
Additionally, the study thoroughly investigates the ef-,,
fects of viscous damping and strain rate damping, boths,,
individually and in combination. Through the analysis,,
of amplitude modulation and phase portraits, distinct,,
behaviors were elucidated across systems with different,,
propagation constants and damping effects. The key,,,
findings are summarized as follows: 6o

e Over time, the amplitude-dependent frequency
shift decreases and eventually reaches zero, regard-ez
less of propagation constants or damping type.
Hence, the influence of nonlinearity diminishes overso
time in a damped system.

. . . . 630
e Analysis of viscous damping revealed a consistent

decay in frequency shifts over time across all prop-
agation constants, while amplitude modulation re-ss
mained uniform. 632
633
e The rate at which the amplitude decays in a sys-63
tem with strain rate damping is directly propor-6%
tional to the fourth power of propagation constant.s3
This leads to a relatively sluggish convergence of
the frequency shift to zero at low propagation con-"
stants, but quite more rapid convergence at higher,,,
propagation constants.

7

e Furthermore, the combined effect of both types of,,,
damping illustrated a gradual convergence of fre-
quency towards that of a linear system as time pro-
gressed. Amplitude decay was primarily attributed®®
to viscous damping at lower propagation constants
and strain rate damping at higher propagation con-g;
stants.

642
This study has the following major contributions: 643

644

e A closed-form equation for amplitude-dependent®®
dispersion relation has been derived for continu-*4
ous systems, providing a valuable analytical tool®
for further research in this domain. o

e Furthermore, the incorporation of damping effectssao
into the analysis of nonlinear dispersion offers in-eso
sights into emulating real-world behavior, enhanc-
ing the applicability and relevance of the findings. **

11
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Appendix A: Multiple spatial scales approach

The nonlinear partial differential equation, as shown in
Eq. (4), involves the independent variables  and ¢, which
correspond to the spatial and temporal dimensions, re-
spectively. By employing a multiscale method, additional
scales are introduced to account for long spatial scales,
defined as X = ex, which augment the original spatial
scale Xy = z. Consequently, the spatial derivatives can
be expressed as

0 0 0
%787)(04»687)(1 (Al)

Further, the solution can be obtained as

w(x, t,€) = Z €"wy, (Xo, X1,t) + O(e) (A2)

n=0

By substituting the solution given in Eq. (A2) into the
partial differential equation given in Eq. (4) and em-
ploying the spatial derivatives provided in Eq. (A1), the
governing partial differential equation can be expressed
through the consolidation of terms with similar powers
of € as.

Ro+ Rie+ O(€) =0 (A3)
where
84w0 6211)0
. — + kywg = A4
Ry 8X04 + e + kiwg =0 ( )
84101 (9471)0 82w1
R : +4 + + Kk
Vaxet T Toxi0x, | oz
8wo 35100 3
— — + k = A
+c1 ot + co 81‘,8){04 + R3wyg 0 ( 5)

The solutions wp, and w; can be obtained by solving
equations Ry = 0 and R; = 0 in progression.

In the case of flexural wave solution in infinite struc-
ture, the boundary complexities can be ignored and the
plane wave solution can be assumed for the equation
Ry =0.

wy = A (Xl) ei(r-@Xo—wt) + A (Xl) e—i(ﬁXo—wt) (AG)

Substituting Eq. (A6) in Eq. (A4) the dispersion relation
for the linear system can be derived as

k' —w? k=0 (A7)
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Further, substituting Eq. (A6) in Eq. (A5), the followinggsss

equation can be obtained 656

8211}1 34 687
2 92X 4 + kyw;
A )
(41/{ 887 +icwA +icok*wA — 3 k3A2A) e‘("“XO_“’t)688
1
— kg A3l (B3rXo=3wt) 4 (0 (A8)6s0

The particular solution of Eq. (A8) contains secular
terms which lead to nonuniform expansion in scaledg,

time. Since the linear operator (g—; + a?(i‘t# + k‘l) is self-

adjoint, as demonstrated in the appendix A, the solv-
ability condition for eliminating secular terms can be de-
rived. This condition is obtained by equating the forc-""
ing terms responsible for generating the secular terms™
to zero, which leads to the following partial differential®

equation governing the amplitude A. oo

695
696

.3 0A ! 27
4iKk° —— + icqwA +icok"wA — 3k3A“A =0
0X1 697

oA . ¢l + cor? 3 -
187)(1 = _IA (4/{3 w + 47‘%3 k3A A (A9)698

The solution of A in polar form can be assumed as
A = La(X,)ePX) A = La(X;)e X)) and substitut-
ing them into Eq. A9 the following equations can be .
obtained.

699

701

1/ ., da . 0B o2

s 16 . 1[-3

12<e —aXl +1e a8X1> N
¢+ ekt a ;g 3 i8 a?

704

Further separating the real and imaginary parts following™

equations can be obtained. 706
707

da c1 + cok? 708
08 3,

87)(1 = —W k'3a (A12)709

The amplitude modulation can be obtained by solvingo
Eq. (All) as

711

712

(A13)713

714

Further, the wave number shift can be obtained by sub-
stituting Eq. (A13) into Eq. (A12) as follows.

A4
(61;;:%“ >°~’X1
a = ape

715

08 _ 3
0X1 163

3 kga2w ! (2t )ox
B= 8 (C1d+082/£4)e < b ) 1 + 5o (Ald)mr

4
(=2 )ox,
kgaoe 716

12

Further, the initial condition has been assumed as at
X1 =0,8=0and so, By = —
frequency can be determined as

3 kgw
8 (61 +

3k

cok?

8 (c1 + cak?)

-1
3 _ksagw The shift in

8 (c1teart)”

8 (c1 4 cor?

c1tegr?t
()
O)<l—e 2
ot
_<%)wsx
1—e "

N4 p—
— 701::3 )le 3 kgagw 1

Using the Eq. (A15), the shift in wavenumber can be de-
termined. However, to obtain the frequency shift the con-
cept of group velocity in amplitude modulation equation
has been used. Further, from differentiating the Eq. (A7)
with propagation constant « the group velocity (v, = 9<)
can be obtained as

dk

(A16)

Now, by substituting Eq. (A16) into Eq. (A13) and Eq.
(A15), and incorporating v, = x/t the following equation
can be determined

a = agpe

— (c1 ~+c2 n4)

1,2
ksw™ ag

ST (

et

_ ef(clJch/#)et)

(A17)

(A18)

Equations A17 and A18 match exactly with the solutions

obtained using temporal multiscales in Egs.

19 and 21.

Thus, it can concluded that both temporal and spatial
methods of multiple scales can be used to determine non-
linear frequency shifts.

Appendix B: Proof of self ad-joint operator

To

the solution w(zx, Tp)

prove

the left-hand
((%22 + 8:,;4 —l—kl) self adjoined, first the variable

separation method has been used to get two separate
ordinary differential equations (ODE) as follows.

62
( OTy?
32
<6T0

+ G(To)

df()

side of Eq.

= f(z)g(To)
+ (967;4 + k‘1> w(l‘,To) =0
+ gt ) £(@)g(T) =0

+ k1 f(x)g(To) = 0

(14)

Let,

(B1)
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dividing whole Eq. (B1) with f(z)g(Tp) as e
1 d*¢(Ty) 1 d'f(x)
+k =0 B2
9(To) dny*  f(z) dat 52
733
Further,
1 dzg(TO) 1 d4f(l‘) 734
=— —ki=2A B3
9(To) dTy? fl@) dat (3)
following this two separate ODEs can be written as 735
d*g(Ty)
W — )\g(TO) =0 (B4)736
d'f(z)

+ (k1 +A) f(x)=0 (B5)

dat

737

The eigenvalue problem to solve is Eq. (B5) and them
L=£

dz? |-
called self ad-joint if inner products (Lu,v) = (u, Lv). w0
741

(Lu,v) = / b (dzz(f)) o(z)da

Linear operator in is ( Operator L can be,,

S ey e
[l [
[ G @

13

Further,

(u, Lv) = / bu(x) <dz;(f)> d (BS)
[xt] [
[ ).

[ B I, (B10)

After applying appropriate boundary conditions the Eq.
(B7) and Eq. (B10) can be proved to be the same. For
brevity in the case of the simply supported beam, the
boundary conditions u(a) = 0,v(a) = 0,u(b) = 0, and
v(b) = 0 can be substituted in the Eq. (B7) and Eq.
(B10). The inner product is:

b 12 2
d*u(zx) d*v(x)
(Lu,v) = (u, Lv) = —/a 2 dp dx  (B11)
Hence, It can be said that the operator

(%22 + ai; + kl) is self adjoined.
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