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Abstract5

Wider bandgap and band merging phenomena in simultaneous negative mass and stiffness metamaterial6

were reported and studied previously. In this letter, an additional feature, namely double attenuation peak, of7

simultaneous negative mass and stiffness metamaterial has been identified. The generation of double attenuation8

peaks is hinged upon the resonance coupling of longitudinal and transverse resonator. Double attenuation peaks9

ensures a significant level of spatial attenuation throughout the attenuation band.10
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1. Introduction12

The metamaterial has unique property of observing frequency dependant dynamic13

mass and stiffness, owing to this a sub-wavelength attenuation bandgap is resulted. This14

frequency dependent mass and stiffness are generally termed as effective mass (Meff )15

and effective stiffness (Keff ) [1–3]. Researchers has proposed several systems to obtain16

negative Young’s modulus or stiffness [4–10] as well as negative mass in metamaterial17

[11–13]. In the field of acoustic and elastic metamaterial, the simultaneous negative den-18

sity and modulus is also widely investigated by several researchers [14–30] owing to its19

salient feature of generation of local resonance (LR) bandgaps. These LR bands enable20

to remove the size constrain of the structure [31] which essentially provides a flexibility in21

designing and realizing real system, such as Helmholtz resonator [32, 33]. The metama-22

terial with effective negative mass has been exemplified by plasma oscillations in metal23

particles [11, 34]. The group velocity, phase velocity, and merging of attenuation bands24

towards obtaining a wider attenuation bandgap were the primary focus of the simulta-25

neous negative metamaterial [18, 35] in the existing state of the art. As all the above26

mentioned attributes can be obtained from the real part of the dispersion relationship;27

hence very little attention were given in the plotting of imaginary part of the dispersion28
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relationship. In this paper, we have shedded light on the imaginary part of the dispersion29

relationship to comprehend the strength of the spatial attenuation of the waves within the30

attenuation band[36]. In order to cater the above mentioned objective, the simultaneous31

negative mass and stiffness metamaterial proposed by Huang and Sun [18] as shown in32

Fig. 1-(a) is adopted and the methodology is extended further to plot the imaginary part33

of the dispersion relationship. Additionally, the effective mass and effective stiffness are34

plotted in frequency domain to develop further insight about the attenuation strength.35

2. Methodology36
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Fig. 1. (a) Model of simultaneous negative metamaterial (b) Monoatomic chain model

An acoustic metamaterial is modelled by assembling mass in mass unit with resonator
attached to massless rigid link as shown in Fig. 1-(a) [18]. m1 is outer ring mass; m2 and
k2 is mass and stiffness of resonator placed in mass in mass unit. k1 is stiffness connecting
two mass in mass unit. m3 and k3 are mass and stiffness of resonator connected by
massless rigid link as shown in Fig. 1-(a). un, vn and wn are only degrees of freedom
of masses respectively m1, m2 and m3 of nth unit cell. zn is the degree of freedom at
connection of rigid links with spring k3 of n

th unit cell. L is the distance between to outer
ring masses m1 and D is the distance between two rigid link connections with spring k3 as
shown in Fig. 1-(a). The governing equations for the acoustic metamaterial (Fig. 1-(a))
can be written as [18].

m1ün + k1(2un − un−1 − un+1)− k2(vn − un)− 2k3(wn − zn) + 2k3(wn−1 − zn−1) = 0

m2v̈n + k2(vn − un) = 0

m3ẅn + k3(wn − zn) = 0
(1)
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The displacement compatibility is obtained as [18].

zn = − L

2D
(un+1 − un) (2)

The displacement of nth atom of metamaterial can be assumed as [19].

un(t) = ũn(ω) e
−i ω t (3)

where,ũn is frequency dependant amplitude of nth unit and ω is temporal frequency. As
per the Bloch theorem [37]

ũn−1 = ũn e
−iLκ = ũn e

−iξ (4)

where, L is distance between two consecutive unit cells, κ is a wave number and ξ is a
nondimentional wave number also called as propagation constant [38]. The effective mass
of the system can be calculated using the conservation of mass momentum in longitudinal
direction Eq. 5.

Meff u̇n = m1 u̇n +m2 v̇n (5)

The equation for the dispersion relation of the acoustic metametrial given in Fig. 1 can
be obtained by deriving effective mass and stiffness and plugging them into the dispersion
relation equation of a monoatomic chain (Fig. 1-(b)) [36]. Effective mass (Meff ) and
effective stiffness (Keff ) as functions of frequency (ω) have been obtained as

Meff = m1 −
m2

m2 ω2

k2
− 1

(6)

Keff = k1 +
ω2L2m3

2D2

(
m3 ω

2

k3
− 1

)−1

(7)

The dispersion relation is described by

−Meff ω
2 +Keff (2− 2 cos(ξ)) = 0

ξ = cos−1

(
1− ω2Meff

2Keff

)
(8)

From Eq. 8, it is expected that in case of |ω
2 Meff

2Keff
| > 1, the propagation constant ξ will

have a non zero imaginary value (ξ = α+β i). The equation of forward wave propagation
can be written as

ũn+1 = ũn e
iξ = ũn e

i(α+β i) = ũn e
−β (cos(α) + i sin(α)) (9)

e−β in Eq. 9 elucidates spatial exponential decay of the wave amplitude in the forward
wave propagation. Further, the rate of attenuation in space increases with increase with
β, so β is defined as the level or strength of attenuation. It can also be concluded that
higher value of β is another coveted feature of the metamaterial. The conditions for peak
in attenuation band can be defined as

Keff = 0 or Meff → ∞
⇒ cos(ξ) → ∞, So β → ∞ (10)
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Table 1. Non-dimensional Input parameters

Mass ratio Stiffness ratio
Case θ21 θ31 δ21 δ31 µ
1 1.5 1 0.1 1 1.67
2 2.25 0.4 0.3 0.25 5

Solving Keff = 0

ωs =

√
k1 k3m3

k1 + 0.5 (L/D)2m3

(11)

Solving Meff = ∞

ωm =
√
k2/m2 (12)

where, ωs and ωm are frequencies at which peak will occur respectively due to negative
stiffness and negative mass in attenuation band. Now, the boundary of propagation band
can be obtained by [39]

−1 ≤ 1− ω2Meff

2Keff

≤ 1 (13)

When both the frequencies ωs and ωm lies in between two consecutive boundaries obtained37

from Eq. 13, the double peak in single attenuation band will occur.38

3. Results39

In this paper, two cases are considered for the illustration and validation as shown
in Fig. 2. In case-1 simultaneous negative mass and stiffness are not found; whereas, in
case-2 it is observed [18]. The parameters has been nondimensionalised for calculation
and validation as following.

θ21 =
m2

m1

; θ31 =
m3

m1

; δ21 =
k2
k1

; δ31 =
k3
k1

; µ =

(
L

D

)2

(14)

frequency ratio (η), peaks frequency ratio due to negative mass(ηm) and stiffness(ηs) are
nondimensionalised as

η =
ω√

k2/m2

; ηm =
ωm√
k2/m2

ηs =
ωs√
k2/m2

(15)

The input parameters for both cases are given in Table 1. Further, propagation con-
stant (ξ), effective mass (Meff ) and effective stiffness (Keff ) are plotted (Fig. 2) against
frequency ratio (η) for validation with [18]. Fig. 2(b) and (e) validates that the real part
of dispersion curve for both the cases are in complete agreement with results reported in
[18]. The bounds (b1, b2, b3, b4 and b5) and peak frequency ratios for infinite Meff and zero
Keff calculated respectively from Eq. 11,Eq. 12 and Eq. 13 are tabulated in Table 2. It
can be comprehended from Table 2 and Fig. 2 that in case-1, both the attenuation peak
lies in different bandgap

b2 < ηm < b3, b4 < ηs < b5
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Fig. 2. (a) Effective mass of case-1, (b) Dispersion curves for case-1, (c) Effective stiffness of case-1,(d)
Effective mass of case-2, (e) Dispersion curves for case-2, (f) Effective stiffness of case-2. Dashed purple
line depicts the peak in attenuation band due to Meff → ∞ at ηm and Dashed green line depicts the
peak in attenuation band due to Keff = 0 at ηs

where as, in case-2, both the peaks lie in a same bandgap as the frequency of both the
resonators are in closed proximity.

b2 < ηm, ηs < b3

This leads to coupling between the two resonators. Due to double peak in a single band,40

high level of attenuation (β = 4) is observed for major part of attenuation band unlike41

other attenuation bands. Therefore, a significant decay of wave amplitude is expected in42

spatial domain.43

4. Conclusion44

The attenuation characteristics, effective mass and effective stiffness of acoustic meta-45

material with simultaneous negative mass and stiffness has been investigated and validated46

in this study. Further the rate of attenuation in spatial domain has been calculated by47
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Table 2. Output parameters

Bounds of bandgap Peak
Case b1 b2 b3 b4 b5 ηm ηs
1 0 0.986 1.581 2.449 12.417 1.000 2.506
2 0 0.900 1.158 1.803 11.381 1.000 1.068

considering imaginary part of the propagation constant. Coupling occurs while the natu-48

ral frequencies of the two resonators are in close proximity. This results to a noteworthy49

double peak phenomenon in a single attenuation band which provides a significant spatial50

attenuation rate throughout the attenuation bandgap.51
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